Меню

Зависимость магнитного потока от тока возбуждения

Зависимость магнитного потока от тока возбуждения

§ 115. Характеристики двигателей постоянного тока

Рабочие свойства двигателей определяются их рабочими характеристиками, представляющими собой зависимости числа оборотов n, вращающего момента Мэ, потребляемого тока I1, мощности P1 и к. п. д. η от полезной мощности на валу Р2, т. е.

Эти зависимости соответствуют естественным условиям работы двигателя, т. е. машина не регулируется и напряжение сети остается постоянным. Так как при изменении полезной мощности Р2 (т. е. нагрузки на валу) изменяется также и ток в якоре машины, то рабочие характеристики часто строятся в зависимости от тока в якоре. Мы рассмотрим зависимость вращающего момента и скорости вращения от тока в якоре для двигателей с различным возбуждением.
Характеристики двигателя параллельного возбуждения изображены на рис. 164, а схема его показана выше (см. рис. 163).


Число оборотов двигателя определяется следующим выражением:

С увеличением нагрузки на валу двигателя повышается также и ток в якоре. Это вызывает увеличение падения напряжения в сопротивлении обмотки якоря и щеточных контактах (Iя rя).
Как ток возбуждения, так и магнитный поток остаются неизменными. Однако при увеличении тока в якоре увеличивается размагничивающее действие потока реакции якоря и магнитный поток Φ несколько уменьшится. Увеличение Iя rя вызывает уменьшение скорости двигателя, а уменьшение Φ увеличивает его скорость. Обычно падение напряжения влияет на изменение скорости в несколько большей степени, чем реакция якоря, так что с увеличением тока в якоре скорость уменьшается. Изменение скорости у двигателя этого типа незначительно и не превышает 5% при изменении нагрузки от нуля до номинальной, т. е. двигатели параллельного возбуждения имеют жесткую скоростную характеристику.
Вращающий момент двигателя равен:

Мэ = kΦIя. (151)

При неизменном магнитном потоке зависимость момента от тока в якоре представится прямой линией. Но под воздействием реакции якоря с увеличением нагрузки происходит некоторое уменьшение магнитного потока и зависимость момента пойдет несколько ниже прямой линии.

Схема двигателя последовательного возбуждения показана на рис. 165. Пусковой реостат этого двигателя имеет только два зажима, так как обмотка возбуждения и якорь образуют одну последовательную цепь. Характеристики двигателя изображены на рис. 166.

Число оборотов двигателя последовательного возбуждения определяется следующим выражением:

где rc — сопротивление последовательной обмотки возбуждения.
В двигателе последовательного возбуждения магнитный поток не остается постоянным, а резко изменяется с изменением нагрузки, что вызывает значительное изменение скорости. Так как падение напряжения в сопротивлении якоря и обмотки возбуждения очень мало в сравнении с приложенным напряжением, то число оборотов можно приближенно определить следующим выражением:

Если пренебречь насыщением стали, то можно считать магнитный поток пропорциональным току в обмотке возбуждения, который равен току в якоре. Следовательно, у двигателя последовательного возбуждения скорость вращения обратно пропорциональна току в якоре и число оборотов резко уменьшается с увеличением нагрузки, т. е. двигатель имеет мягкую скоростную характеристику. С уменьшением нагрузки скорость вращения двигателя увеличивается. При холостом ходе (Iя ≈ 0) скорость двигателя беспредельно возрастает, т. е. двигатель идет в разнос.
Таким образом, характерным свойством двигателей последовательного возбуждения является недопустимость сброса нагрузки, т. е. работы вхолостую или при малых нагрузках. Двигатель имеет минимально допустимую нагрузку, составляющую 25 — 30% номинальной. При нагрузке меньше минимально допустимой скорость двигателя резко увеличивается, что может вызвать его разрушение. Поэтому в случаях, когда возможны сбросы или резкие уменьшения нагрузок, использовать двигатели последовательного возбуждения нельзя.
В двигателях очень малых мощностей сброс нагрузки не вызывает разноса, так как механические потери двигателя будут являться для него достаточно большой механической нагрузкой.
Вращающий момент двигателя последовательного возбуждения, учитывая пропорциональную зависимость между магнитным потоком и током в якоре (Φ = с′Iя), можно определить следующим выражением:

Мэ = kΦIя = kI 2 я, (153)

где с′ и k′ — некоторые постоянные величины; k′ = k · c′, т. е. вращающий момент пропорционален квадрату тока. Однако при больших токах сказывается насыщение стали и зависимость момента приближается к прямой линии. Таким образом двигатели этого типа развивают большие вращающие моменты при малых оборотах, что имеет существенное значение при пуске больших инерционных масс и при перегрузках. Эти двигатели широко используются в транспортных и подъемных устройствах.
При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения.
Двигатели со встречным включением обмоток не нашли широкого применения, так как они обладают плохими пусковыми свойствами и работают неустойчиво.
Скоростные характеристики двигателей смешанного возбуждения занимают промежуточное положение между характеристиками двигателей параллельного и последовательного возбуждения. С увеличением тока в якоре число оборотов якоря уменьшается в большей мере, чем в двигателях параллельного возбуждения, за счет увеличения магнитного потока, вызываемого увеличением тока в последовательной обмотке возбуждения. При холостом ходе двигатель смешанного возбуждения не идет в разнос, так как магнитный поток не уменьшается до нуля в результате наличия параллельной обмотки возбуждения.
При увеличении нагрузки в двигателях смешанного возбуждения происходит увеличение магнитного потока и вращающий момент возрастает в большей мере, чем в двигателях параллельного возбуждения, но в меньшей степени, чем в двигателях последовательного возбуждения.

Читайте также:  Сколько ставить ток для зарядки аккумуляторов

Источник

Большая Энциклопедия Нефти и Газа

Магнитный поток — возбуждение

Магнитный поток возбуждения усиливается в начале работы генератора и изменяется в процессе его работы ввиду изменения силы тока в обмотке возбуждения. Для поддержания постоянной величины напряжения генератора необходимо при изменении скорости вращения якоря автоматически изменять величину магнитного потока возбуждения обратно пропорционально скорости вращения якоря, что достигается изменением силы тока возбуждения при помощи регулятора напряжения. [1]

Магнитный поток возбуждения зависит от силы тока, потребляемого стартером, а поэтому и вращающий момент будет пропорционален силе тока в цепи стартера. [2]

Магнитный поток возбуждения пропорционален току якоря. [3]

Магнитный поток возбуждения прямо пропорционален магнитной проводимости [ л, которая зависит от величины зазора между якорем и полюсными выступами. [4]

Магнитный поток возбуждения изменяется косинусоидально и наводит в каждой из обмоток статора синусоидальные ЭДС, амплитуды которых зависят от угла а поворота ротора. ОВ и обмоток статора О, О2, Оу При совпадении магнитных осей возбуждения и первой обмотки статора амплитуда синусоидальной ЭДС в ней максимальна ( Ет EJ, а при взаимно перпендикулярных направлениях осей ОВ и О равна нулю. [6]

Магнитный поток возбуждения создается в результате совместного действия двух обмоток. [7]

Магнитный поток возбуждения с увеличением нагрузки действительно уменьшается, так как уменьшаются напряжение на зажимах генератора и ток возбуждения. [8]

Магнитный поток возбуждения увеличивается, скорость двигателя уменьшается. [9]

Магнитный поток возбуждения изменяется косинусоидально и наводит в каждой из обмоток статора синусоидальные ЭДС, амплитуды которых зависят от угла а поворота ротора. Ет), а при взаимно перпендикулярных направлениях осей 0В и Ot равна нулю. [11]

Магнитный поток возбуждения однофазного коллекторного двигателя изменяется по величине ( пульсирует), поэтому магнитную систему набирают нз отдельных листов электротехнической стали, чтобы снизить тепловые потери на вихревые токи. [12]

Результирующий магнитный поток возбуждения зависит от величины магнитных потоков в обмотках / и / / ( магнитный поток в обмотке / устанавливается регулятором напряжения РИД в зависимости от заданных параметров режима сварки) и изменяет величину напряжения и полярность на зажимах генератора. Этим изменяется скорость и направление вращения двигателя головки и, следовательно, скорость и направление движения электродной проволоки. [14]

Зависимость магнитного потока возбуждения Ф от МДС FB ( магнитная характеристика — рис. 11.21) для машин постоянного тока подобна магнитной характеристике для синхронных машин. [15]

Источник

Возбуждение двигателя постоянного тока. Схемы возбуждения.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

Читайте также:  Измерение сопротивления обмоток постоянному току трансформаторов напряжения

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

Источник



Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ

ads

Способы регулирования частоты вращения двигателей оцени­ваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым отношением наиболь­шей частоты вращения к наименьшей; экономичностью регулиро­вания, определяемой стоимостью регулирующей аппаратуры и потерями электроэнергии в ней.

Из (29.5) следует, что регулировать частоту вращения двига­теля независимого возбуждения можно изменением сопротивле­ния в цепи якоря, изменением основного магнитного потока Ф, изменением напряжения в цепи якоря.

Регулирование частоты вращения ДПТ НВ введение дополнительного сопротивления в цепь якоря

Дополнительное сопротивление (реостат rд) включают в цепь яко­ря аналогично пусковому реостату (ПР). Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока.

При включении сопротивления rд в цепь якоря выражение частоты (29.5) принимает вид

где — частота вращения в режиме х.х.;

— изменение частоты вращения, вызван­ное падением напряжения в цепи якоря.

С увеличением rд возрастает , что ведет к уменьшению час­тоты вращения. Зависимость n = f(rд) иллюстрируется также и механическими характеристиками двигателя независимого воз­буждения (рис. 29.4, а): с повышением rд увеличивается наклон механических характеристик, а частота вращения при заданной нагрузке на валу (M = Mном ) уменьшается. Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате (I 2 a *rД), которые интенсивно растут с увеличением мощности двигателя.

clip_image002

Рис. 29.4. Механические характеристики двигателя параллельно­го возбуждения:

а — при введении в цепь якоря добавочного сопротивления;

б — при изменении основного магнитного потока;

в — при изменении напряже­ния в цепи якоря

Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока

Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения [см. (29.5)]. При увеличении rрег час­тота вращения растет. Зависимость частоты вращения от тока воз­буждения выражается регулировочной характеристикой двигателя n=f(IВ) при и .

Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к рос­ту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря дости­гает значения , т. е. падение напряжения в цепи яко­ря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax. При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.

При небольшом нагрузочном моменте на валу двигателя мак­симальная частота вращения nmax во много раз превосходит номи­нальную частоту вращения двигателя nном и является недопусти­мой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата rрег необходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допус­тимого значения.

Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза. Необходимо также следить за надежностью электриче­ских соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота враще­ния может достигнуть опасного значения.

clip_image038

Вид регулировочных характеристик n = f(Ф) зависит от значе­ния нагрузочного момента M2 на валу двигателя: с ростом M2 мак­симальная частота вращения nmax уменьшается (рис. 29.5, б).

Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения

Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.

Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуж­дения ток IВ = (0,01 — 0,07)I а , а поэтому потери в регулировочном реостате невелики.

Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5. Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, иска­жающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.

Читайте также:  Если энергия соленоида равна при силе тока в нем

Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря

Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении.

Частота вращения в режиме х.х. n пропорциональна напря­жению, а от напряжения не зависит, поэтому ме­ханические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4, в). Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением. Для управления двигателями малой и средней мощно­сти в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на вхо­де выпрямителя (рис. 29.6,а).

Для управления двигателями большой мощности целесооб­разно применять генератор постоянного тока независимого возбу­ждения; привод осуществляется посредством приводного двигате­ля (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока. Для питания постоянным током це­пей возбуждения генератора Г и двигателя Д используется возбу­дитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управле­ния двигателем постоянного тока (рис. 29.6, б) известна под на­званием системы «генератор — двигатель» (Г—Д).

clip_image010

Рис. 29.6. Схемы включения двигателей постоянного тока при регули­ровании частоты вращения изменением напряжения в цепи якоря

Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно вос­пользоваться изменением тока возбуждения двигателя.

Изменение направления вращения (реверс) двигателя, рабо­тающего по системе ГД, осуществляется изменением направле­ния тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах. Если двигатель постоянного тока работает в условиях резко переменной на­грузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М, который за­пасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.

Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазоне nMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.

Еще одним достоинством рассматриваемого способа регули­рования является то, что он допускает безреостатный пуск двига­теля при пониженном напряжении.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время t к обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax. Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin (при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); — коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого .

При импульсном регулировании частота вращения двигателя

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) , а частота подачи импульсов равна 200—400 Гц.

clip_image040

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора. Цепь L1C, шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1C и создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор. Параметрами цепи L1C определяется время (с) открытого состояния тиристора: . Здесь L1 выража­ется в генри (Гн); С — в фарадах (Ф).

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Источник