Меню

Защитная плотность тока в сухих грунтах

Приложение Б (справочное) Определение средней плотности катодного тока

Сущность метода заключается в определении средней плотности катодного тока, необходимого для смещения потенциала стали в грунте на 100 мВ отрицательнее потенциала коррозии.

Б.1 Отбор проб — по А.2.1 приложения А.

Б.2. Средства контроля и вспомогательные устройства

Источник постоянного тока любого типа

Миллиамперметр с верхним пределом измерения 1 мА или микроамперметр с пределом измерения 200 или 500 мкА, класс точности не ниже 1,5.

Вольтметр любого типа с пределом измерений 1В и внутренним сопротивлением не менее 1 МОм.

Допускается использовать специальные приборы, которые обеспечивают автоматическое смещение потенциала от потенциала коррозии и поддерживают его на заданном уровне в течение опыта.

Ячейка прямоугольной формы размером 70×70×100 мм из диэлектрического материала (стекло, фарфор, пластмасса и т.д.) вместимостью от 0,5 до 1 дм 3 .

Электрод рабочий, представляющий прямоугольную пластину из стали марки Ст10 по ГОСТ 1050 толщиной от 1,5 до 2мм, размером 50×20 мм и рабочей поверхностью 10 см 2 (0,001 м 2 ).

Электрод вспомогательный из стали марки Ст10 по ГОСТ 1050 или другой углеродистой стали, по форме и размерам аналогичный рабочему электроду.

Одну поверхность рабочего, а также вспомогательного электродов и токоотводы от них изолируют мастикой.

Электрод сравнения — насыщенный медно-сульфатный, хлоридсеребряный, каломельный и т.д.

Вода дистиллированная по ГОСТ 6709.

Б.3. Подготовка к измерениям

Отобранную пробу загружают в ячейку, сохраняя естественную влажность грунта. Если при хранении проб после их отбора возможно изменение естественной влажности грунта, определяют влажность отобранной пробы по ГОСТ 5180. Перед испытанием вновь определяют влажность пробы грунта и доводят ее до естественной с помощью дистиллированной воды.

На дно ячейки насыпают на высоту 20 мм грунт и уплотняют. Рабочий и вспомогательный электроды устанавливают вертикально неизолированными поверхностями друг к другу на расстоянии 3-4 см. Затем грунт укладывают в ячейку послойно (один-три слоя) с последовательным трамбованием слоев, добиваясь максимально возможного уплотнения. Расстояние от верхней кромки рабочего электрода до поверхности грунта – 50 мм. Электрод сравнения устанавливают сверху ячейки в грунт, заглубляя его на 1,0-1,5 см.

Одним и тем же грунтом заполняют три ячейки и параллельно выполняют три измерения силы катодного тока Iк в микроамперметрах в каждой ячейке.

Собирают установку по схеме, приведенной на рисунке Б.1, с использованием прерывателя тока и вольтметра или с использованием специального прибора, включающего в себя прерыватель тока.

1 — миллиамперметр; 2 — регулируемое сопротивление; 3 — источник постоянного тока; 4 — вольтметр; 5 — прерыватель тока с клеммами для подключения электродов; Т — вспомогательного, Э.С — сравнения, D — рабочего; 6 — ячейка; 7-рабочий электрод; 8 — вспомогательный электрод; 9 — электрод сравнения

Рисунок Б.1 — Схема установки для определения плотности катодного тока

Б.4. Проведение измерений

Рабочий электрод выдерживают в грунте до включения поляризации от 15 до 20 мин и измеряют его потенциал коррозии относительно электрода сравнения.

Катодную поляризацию осуществляют, подключая рабочий электрод к отрицательному полюсу источника постоянного тока, а вспомогательный электрод — к положительному. Потенциал электрода смещают на 100 мВ отрицательнее его стационарного потенциала, исключая омическую составляющую из измеряемого потенциала рабочего электрода в милливольтах, путем разрыва цепи в момент измерения.

Измеряют силу тока Iк в микроамперах. Если сила тока Iк постоянна или уменьшается во времени, то длительность поляризации составляет 15 мин, в течение которых измеряют и записывают три-четыре значения Iк и соответствующее время измерения t. Если сила тока во времени растет, то измеряют и записывают Iк пять-шесть раз в течение 40 мин или в более короткий промежуток времени. Сила тока более 200 мкА (2×10-4А) с учетом рабочей поверхности электрода 10 см 2 характеризует высокую коррозионную агрессивность грунта.

Последнее значение силы тока в каждой ячейке берут для вычисления среднеарифметического значения силы катодного тока Iк cр. по результатам параллельных измерений в трех ячейках и последующего определения средней плотности катодного тока iк,

Б.5 Обработка результатов измерений

Среднюю плотность катодного тока iк, А, вычисляют по формуле

где Iк.ср. — среднеарифметическое значение силы катодного тока по результатам измерений в трех параллельных ячейках, А;

0,001- площадь поверхности рабочего электрода, м 2 .

Б.6 Оформление результатов измерения

Б.6.1 Результаты измерения заносят в протокол по форме Б.1.

Форма Б.1. Протокол определения средней плотности катодного тока

Наименование города _________________________________________________

Дата отбора проб «_____»___________________________г.

Адрес пункта отбора проб Номер пункта по схеме Ячейка 1 Ячейка 2
t, мин Ir, А t, мин Ir, А
1 2 3 4 5 6 7 8
Ячейка 3 Среднее значение силы тока Iк. ср., А Средняя плотность катодного тока 4, А/м 2 Коррозионная агрессивность грунта Тип измерительного прибора, заводской номер, дата поверки
t, мин Ir, А
9 10 11 12 13 14 15

Измерения провел __________________________________

Б.6.2. Результаты определения коррозионной агрессивности грунтов заносят в протокол по форме Б.2.

Форма Б.2. Протокол результатов определения коррозионной агрессивности грунтов по отношению к стали

Адрес пункта измерений или отбора проб Номер пункта по плану (схеме) трассы трубопровода Удельное электрическое сопротивление грунта, определенное в полевых условиях Rг.п., Ом·м Удельное электрическое сопротивление грунта, определенное в лабораторных условиях Rг.л., Ом·м Средняя плотность катодного тока iк, А/м 2 Оценка коррозионной агрессивности грунта
1 2 3 4 5 6

1. План (схема) трассы трубопровода.

2. Протоколы измерений (форма Б.1.).

© 2007–2021 ХК«Газовик». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Источник

8. Требования к электрохимической защите

8.1. Общие требования

8.1.1 Электрохимическая защита должна обеспечивать непрерывную по времени катодную поляризацию подземных сооружений, подлежащих защите в соответствии с 6.6, 6.8-6.11 настоящего стандарта, в течение всего срока их эксплуатации.

8.1.2 Дополнительные требования к электрохимической защите объектов магистральных трубопроводов определены в ГОСТ 25812.

Примечание. Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2МПа (категория 1а) рекомендуется применять требования к электрохимической защите, соответствующие требованиям ГОСТ 25812.

8.1.3 Средства электрохимической защиты, предусмотренные проектом, вводят в действие в зонах опасного влияния блуждающих токов не позднее одного месяца, а в остальных случаях — не позднее трех месяцев после укладки сооружения в грунт. Если предусматриваются более поздние сроки окончания строительства и ввода в эксплуатацию средств электрохимической защиты, то необходимо предусмотреть временную электрохимическую защиту с указанными в настоящем пункте сроками ввода в эксплуатацию.

8.1.4 Сооружения, температура металла которых весь период эксплуатации ниже чем 268К (минус 5°С), не подлежат электрохимической защите, при отсутствии опасного влияния блуждающих и индуцированных токов, вызванных сторонними источниками. Сбор исходных данных о коррозионной ситуации на проектируемом участке сооружения для принятия решения об отказе от применения электрохимической защиты сооружения должен осуществляться в период максимального растепления грунта и его естественного увлажнения.

8.1.5 Допускается не предусматривать электрохимическую защиту стальных вставок, стальных футляров (кожухов) в составе линейной части неметаллических трубопроводов, участков соединений неметаллических газопроводов со стальными вводами в дома (при наличии на вводе электроизолирующих вставок) с защитным покрытием усиленного типа, длиной не более 10м. При этом засыпку траншеи в той ее части, где проложена стальная вставка, по всей глубине заменяют на песчаную.

8.1.6 Для контроля эффективности электрохимической защиты сооружения измеряют потенциалы на защищаемом сооружении в контрольно-измерительных пунктах, на вводах в здания и других элементах сооружения, доступных для проведения измерения.

8.1.7 Места размещения контрольно-измерительных пунктов магистральных трубопроводов определены в ГОСТ 25812. Для остальных сооружений контрольно-измерительные пункты устанавливают с интервалом не более 200м в пределах поселения и не более 500м — вне пределов поселения, в том числе:

Читайте также:  Безопасные приемы освобождения пострадавшего от действия электрического тока

— в пунктах подключения дренажного кабеля к сооружению;

— на границах зоны защиты установки катодной защиты и границах зон защиты смежных установок катодной защиты;

— в местах максимального сближения сооружения с анодным заземлителем;

— в местах пересечения с автомобильными дорогами и железнодорожными путями с контролем параметров электрохимической защиты по обе стороны от пересечения;

— в местах подземного расположения электроизолирующих вставок.

Примечание. Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2 МПа (категория 1а) рекомендуется места размещения контрольно-измерительных пунктов определять в соответствии с требованиями ГОСТ 25812.

8.1.8 Измерение поляризационных потенциалов (потенциалов без омической составляющей) проводят следующими методами (см. приложение X):

— метод отключения тока поляризации датчика потенциала (вспомогательного электрода), имитирующего дефект в защитном покрытии;

— метод отключения тока защиты подземного сооружения;

— метод непосредственного измерения потенциала вспомогательного электрода через электролитический ключ, максимально приближенный к вспомогательному электроду.

Примечание. При использовании для измерения любых датчиков потенциала (вспомогательных электродов), рекомендуется определить соотношение размеров датчика (вспомогательного электрода) и среднего значения размеров дефектов защитного покрытия на контролируемом участке сооружения для учета при оценке результатов измерений согласно основным закономерностям теории электрического поля в грунте.

8.1.9 Катодную поляризацию сооружений осуществляют таким образом, чтобы защитные потенциалы металла относительно насыщенного медно-сульфатного электрода сравнения находились между минимальным и максимальным (по абсолютному значению) значениями в соответствии с таблицей 4. Допускается применение других неполяризующихся электродов сравнения с приведением результатов измерения к насыщенному медно-сульфатному электроду сравнения.

Таблица 4. Защитные потенциалы металла сооружения относительно насыщенного медно-сульфатного электрода сравнения

Сооружения и условия их эксплуатации Минимальный защитный потенциал(1) относительно насыщенного медно-сульфатного электрода сравнения(2), В Максимальный защитный потенциал(1) относительно насыщенного медно-сульфатного электрода сравнения(2), В
Поляризационный потенциал (без омической составляющей) Суммарный (с омической составляющей) Поляризационный потенциал (без омической составляющей) Суммарный (с омической составляющей)
Действующие стальные сооружения до их реконструкции(3);
С температурой поверхности (транспортируемого продукта) не выше 40°С
-0,85 -0,9 -1,15 -2,5
С температурой поверхности (транспортируемого продукта) свыше 40°С; сооружения при опасности биокоррозии -0,95 -1,05 -1,15 -3,5
Вновь построенные и реконструированные сооружения:
С температурой поверхности (транспортируемого продукта) не выше 40°С -0,85 — 0,95 -1,2 -3,5
С температурой поверхности (транспортируемого продукта) свыше 40°С, не имеющие теплоизоляции -0,95 -1,05 — 1,1 -3,5

(1) Здесь и далее под минимальным и максимальным значениями потенциала подразумевают его значения по абсолютной величине.

(2) Электроды сравнения обеспечивают стабильность потенциала по отношению к образцовому электроду сравнения по ГОСТ 17792 в пределах ±15мВ.

(3) Показатели относятся к сооружениям, для которых проектными решениями не был предусмотрен контроль поляризационного потенциала. Допускается оценивать защищенность только по величине потенциала с омической составляющей, который для действующих стальных сооружений с температурой поверхности (транспортируемого продукта) не выше 40°С, с покрытием на основе битумной мастики не отрицательнее минус 2,5В относительно насыщенного медно-сульфатного электрода сравнения.

8.1.10 Катодную поляризацию трубопроводов с теплоизоляцией, в том числе тепловых сетей и горячего водоснабжения бесканальной прокладки, а также канальной прокладки при расположении анодного заземления за пределами канала, проводят таким образом, чтобы потенциал с омической составляющей (суммарный потенциал) трубопровода был в пределах от минус 1,1 до минус 2,5В по медно-сульфатному электроду сравнения. При отсутствии защитного изоляционного покрытия на наружной поверхности трубопровода, его потенциал с омической составляющей трубопровода должен находиться в пределах от минус 1,1 до минус 3,5В по медно-сульфатному электроду сравнения.

8.1.11 Катодную поляризацию трубопроводов тепловых сетей и горячего водоснабжения канальной прокладки применяют при расположении анодных заземлений в канале или вне канала. При расположении анодных заземлений в канале потенциал трубопровода, измеренный относительно установленного у поверхности трубы вспомогательного стального электрода, поддерживают на 0,3-0,8В отрицательнее потенциала трубы относительно этого электрода, измеренного при отсутствии катодной поляризации трубы. Измерение потенциала трубопровода при расположении анодного заземления в канале приведено в приложении Ш.

8.1.12 Катодную поляризацию подземных металлических сооружений осуществляют так, чтобы она не оказывала опасного влияния на смежные подземные металлические сооружения. Если при осуществлении катодной поляризации возникнет опасное влияние на смежные подземные металлические сооружения, то необходимо принять меры по его устранению или выполнить совместную защиту этих сооружений.

Примечание. Опасным влиянием катодной поляризации защищаемого сооружения на соседние металлические сооружения в соответствии с 5.11 считают:

— уменьшение по абсолютной величине минимального или увеличение по абсолютной величине максимального защитного потенциала на соседних металлических сооружениях, имеющих электрохимическую защиту;

— появление опасности коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты от нее.

8.1.13 Для повышения эффективности электрохимической защиты и ограничения опасного влияния на соседние металлические сооружения, а также электрического секционирования трубопроводов, проходящих в зонах воздействия блуждающих токов, необходимо предусматривать электроизолирующие вставки (фланцы, муфты и т.п.) в соответствии с нормативной документацией. Места их установки определяются проектом.

8.1.14 Контроль работы установок электрохимической защиты в эксплуатационных условиях заключается в периодическом осмотре, оценке технического состояния и проверке эффективности их работы. При значительных изменениях, связанных с развитием сети подземных металлических сооружений и источников блуждающих и индуцированных токов, проводят дополнительный контроль.

8.1.15 Контроль непрерывности работы (перерывов в работе) установок катодной защиты должен быть обеспечен с учетом времени на производство плановых регламентных и ремонтных работ в процессе эксплуатации. Перерывы в работе установок катодной защиты допускаются только для проведения плановых работ. Работу по внеплановому ремонту вышедших из строя установок электрохимической защиты классифицируют как аварийную.

8.1.16 Если в зоне действия вышедшей из строя установки электрохимической защиты защитный потенциал трубопровода обеспечивается соседними (смежными) установками защиты (перекрывание зон защиты), то срок устранения неисправности определяется техническим руководителем эксплуатационной организации.

8.1.17 Стальные трубопроводы, реконструируемые методом санирования (облицовки внутренней поверхности трубы) с помощью полимерных материалов, как правило, подлежат защите в соответствии с 8.1.9. Стальные трубопроводы, реконструируемые методом протяжки неметаллических труб, подлежат защите на тех участках, где стальная труба необходима как защитный футляр (под автомобильными, железными дорогами и др.) с учетом 8.1.5.

8.1.18 Стальные футляры (кожухи) трубопроводов под автомобильными дорогами, железнодорожными и трамвайными путями при бестраншейной прокладке (прокол, продавливание и другие технологии, разрешенные к применению), как правило, защищают защитными покрытиями и средствами электрохимической защиты в соответствии с 6.6 и 8.1.9.

8.1.19 В качестве футляров (кожухов) рекомендуется использовать трубы с внутренним защитным покрытием.

8.1.20 Если обеспечение защитных потенциалов по 8.1.9 на действующих трубопроводах, транспортирующих среды температурой не выше 40°С и длительное время находившихся в эксплуатации в коррозионно-опасных условиях, экономически нецелесообразно, по согласованию с проектной и обследующей организациями допускается применять в качестве минимального поляризационного защитного потенциала трубопровода его значение на 100мВ отрицательнее стационарного потенциала. Стационарный потенциал трубопровода определяют по датчику потенциала (вспомогательному электроду) (см. приложение Щ).

Примечание. Минимальный защитный поляризационный потенциал — более отрицательный, чем минус 0,65В.

8.2 Требования к электрохимической защите при наличии опасного влияния блуждающих токов и индуцированных переменных токов

8.2.1 Защиту стальных подземных трубопроводов от коррозии, вызываемой блуждающими постоянными токами от электрифицированного транспорта, а также переменными токами, в том числе индуцированными от высоковольтных линий электропередач, обеспечивают в опасных зонах, независимо от коррозионной агрессивности грунтов, средствами электрохимической защиты.

Читайте также:  Ток полного отклонения что это

8.2.2 Защиту сооружений от опасного влияния блуждающих постоянных токов осуществляют так, чтобы исключить образование на сооружении знакопеременных или стационарных анодных зон.

Допускается кратковременное анодное смещение потенциала сооружения относительно стационарного потенциала, суммарной продолжительностью не более 4 мин в сутки.

8.2.3 Определение смещений потенциала (разность между измеренным потенциалом сооружения и стационарным потенциалом) проводят в соответствии с приложением Д.

Примечание. При отсутствии данных о стационарном потенциале его значение для стали принимают равным минус 0,70В.

8.2.4 В условиях опасного влияния блуждающих постоянных токов при защите стальных трубопроводов и резервуаров с температурой транспортируемого (хранимого) продукта не выше 40°С в грунтах высокой коррозионной агрессивности, трубопроводов оросительных систем и систем обводнения в грунтах средней коррозионной агрессивности, трубопроводов сельскохозяйственного водоснабжения и резервуаров траншейного типа, независимо от коррозионной агрессивности грунтов, средние значения поляризационных и суммарных потенциалов должны быть в пределах, указанных в 8.1.9.

8.2.5 Применение дренажной защиты должно обеспечивать выполнение требований 8.1.9. Если применение поляризованных дренажей неэффективно, то используют катодную защиту, защиту усиленными дренажами или катодную защиту совместно с поляризованным дренажом; электрическое секционирование трубопроводов с применением электроизолирующих вставок.

8.2.6 Подключение дренажных устройств к рельсовым путям производится в соответствии с требованиями НД. Не допускается непосредственно присоединять установки дренажной защиты к отрицательным шинам и к сборке отрицательных линий тяговых подстанций электрифицированного транспорта.

8.3 Требования к протекторной защите

8.3.1 Защиту с использованием протекторов (гальванических анодов) рекомендуется применять при обеспечении токоотдачи единичного протектора не менее 50мА:

— для отдельных участков трубопроводов небольшой протяженности (не имеющих электрических контактов с другими сооружениями) при отсутствии или при наличии опасности блуждающих постоянных токов, если вызываемое ими среднее смещение потенциала от стационарного не превышает плюс 0,3В;

— для участков трубопроводов, электрически отсоединенных от других коммуникаций электроизолирующими вставками;

— при относительно малых расчетных значениях токов (менее или равных 1А);

— как дополнительное средство защиты, когда действующие (предусмотренные проектом) средства электрохимической защиты не обеспечивают защиту отдельных участков трубопроводов;

— для защиты от опасного влияния переменного тока.

8.3.2 Протекторную защиту трубопроводов тепловых сетей и горячего водоснабжения применяют только при их прокладке в каналах с размещением протекторов (гальванических анодов) в канале или непосредственно на поверхности трубопроводов.

Источник

Сопротивление грунта и заземление

Сопротивление грунта и заземление

Удельное сопротивление грунта — это главный параметр, который влияет на конструкцию заземляющего устройства: количество и длину заземляющих электродов. Физически оно равняется электрическому сопротивлению, которое грунт оказывает току при прохождении им расстояния между противоположными гранями условного куба объёмом 1 куб. м.; размерность Ом*м. Удельное сопротивление зависит от многих факторов: состава и структуры грунта, его плотности, влажности, температуры, наличия примесей – солей, кислот, щелочей. Все эти параметры изменяются в течение года, поэтому соответствующим образом меняется и сопротивление грунта. Данный факт нужно учитывать при проведении замеров, расчётов, а также при измерении сопротивления растеканию смонтированного заземляющего устройства.

Сопротивление грунта и сопротивление заземления

Чем ниже значение удельного сопротивления грунта, тем лучше электрический ток растекается в среде, и тем меньше получится сопротивление заземляющего устройства. Низкое сопротивление заземления обеспечивает поглощение грунтом токов повреждений, токов утечки и молниевых токов, что предотвращает их нежелательное протекание по проводящим частям электроустановок и защищает контактирующих с ними людей от поражения электрическим током, а оборудование — от помех и нарушений работы. Заземляющее устройство обязательно должно быть дополнено правильно организованной системой уравнивания потенциалов.

Такие объекты, как жилой дом и линия электропередачи не требуют столь низкого сопротивления заземления, как, например, подстанции и сооружения с большим объёмом информационного и коммуникационного оборудования: ЦОД, медицинские центры и объекты связи. Более низкое сопротивление заземляющего устройства можно обеспечить растеканием тока с большего количества электродов, при том что высокое сопротивления грунта приводит к ещё большему увеличению габаритов заземлителя.

Норма сопротивления заземляющего устройства определяется ПУЭ 7 изд. раздел 1.7. — для электроустановок разных классов напряжения, пункты 2.5.116-2.5.134 — для линий электропередачи, а также другими отраслевыми стандартами и документацией к аппаратам и приборам.

Удельное сопротивление преимущественно зависит от типа грунта. Так, «хорошие» грунты, обладающие низким сопротивлением — это глина, чернозём (80 Ом*м), суглинок (100 Ом*м). Сопротивление песка сильно зависит от содержания влаги и колеблется от 10 до 4000 Ом*м. У каменистых грунтов оно легко может достигать нескольких тысяч Ом*м: у щебенистых — 3000-5000 Ом*м, а у гранита и других горных пород — 20000 Ом*м.

Удельное сопротивление грунтов в России

Среднее удельное сопротивление часто встречающихся на территории России грунтов приведено в таблице на странице, посвященной удельному сопротивлению грунта

Принять тип грунта можно по карте почв на территории России (для просмотра карты в полном размере, щёлкните на ней).

Карта почв России

Значения, приведённые в таблицах справочные и подходят только для ориентировочного расчёта в том случае, когда другая информация отсутствует. Для того чтобы получить точное значение удельного сопротивления, необходимо проводить изыскательные работы. Замеры грунта проводятся в полевых условиях методом амперметра-вольтметра, а также путем измерения инженерно-геологических элементов (ИГЭ), проведенных на разной глубине методом вертикально электрического зондирования (ВЭЗ). Значения, полученные этими двумя способами, могут значительно отличаться, также, как отличаются характеристики грунта незначительно удаленных точек на местности. Поэтому, чтобы исключить ошибку в расчетах необходимо брать максимальный из результатов этих двух методов при приведении к однослойной расчётной модели. Если для расчётов необходимо привести грунт к двухслойной модели, то использовать можно только метод ВЭЗ.

Сезонное изменение сопротивления грунта и его учёт

Для учёта сезонных изменений и влияния природных явлений «Руководство по проектированию, строительству и эксплуатации заземлений в установках проводной связи и радиотрансляционных узлов» оперирует коэффициентом промерзания, который предписывается определенной климатической зоне России и коэффициентом влажности, учитывающим накопленную грунтом влагу и количество осадков, выпавших перед измерением. РД 153-34.0-20.525-00 при определении сопротивления заземляющего устройства подстанций использует сезонный коэффициент.

При пропитывании почвы водой, удельное сопротивление может снижаться в десятки раз, а при промерзании в разы увеличиваться. Поэтому, в зависимости от того, в какое время года были выполнены измерения, необходимо учитывать данные коэффициенты.

Это позволит предотвратить превышения нормы заземляющего устройства в результате изменений удельного сопротивления; нормируемое значение в соответствии с ПУЭ 7 изд. должно обеспечиваться при самых неблагоприятных условиях в любое время года.

При увеличении габаритов заземляющего устройства влияние сезонных изменений значительно снижается. Если заземлитель имеет горизонтальные размеры порядка 10 метров, то его сопротивление в течение года может изменяться в десятки и сотни раз, тогда как сопротивление заземлителя габаритами 100-200 метров изменяется всего лишь в 2 раза. Это связано с тем, что глубина растекания тока соизмерима с габаритами горизонтального заземлителя.Таким образом, распространенная в горизонтальном направлении конструкция действует на глубинные слои почвы, часто обладающие низким удельным сопротивлением в любое время года.

«Сложные грунты» с высоким удельным сопротивлением

Известняк

Некоторые типы грунта имеют крайне высокое удельное сопротивление. Его значение для каменистых грунтов достигает нескольких тысяч Ом*м при том, что организация заземляющего устройства в такой среде связана с множеством трудностей – значительными затратами материалов и объёмами земляных работ. Из-за твердых включений практически невозможно использовать вертикальные электроды без применения бурения. Пример заземления в условиях каменистого грунта приведён на странице.

Возможно, ещё более сложный случай – это вечномерзлый грунт. При понижении температуры удельное сопротивление резко возрастает. Для суглинка при +10 С° оно составляет около 100 Ом*м, но уже при -10 С° может достигать 500 — 1000 Ом*м. Глубина промерзания вечномерзлого грунта бывает от нескольких сот метров до нескольких километров, при том что в летнее время оттаивает лишь верхний слой незначительной толщины: 1-3 м. В результате круглый год вся зона эффективного растекания тока будет иметь значительное удельное сопротивление – порядка 20000 Ом*м в вечномерзлом суглинке и 50000 Ом*м в вечномерзлом песке. Это чревато организацией заземляющего устройства на огромной площади, либо применением специальных решений, например, таких как электролитическое заземление. Для наглядного сравнения, пройдя по ссылке, можно посмотреть расчёт в вечномерзлом грунте.

Читайте также:  Таблица сечение ток мм2

Решения по достижению необходимого сопротивления

Традиционные способы

В хороших грунтах, как правило, устанавливается традиционное заземляющее устройство, состоящее из горизонтальных и вертикальных электродов.

Использование вертикальных электродов несет важное преимущество. С увеличением глубины удельное сопротивление грунта «стабилизируется». В глубинных слоях оно в меньшей степени зависит от сезонных изменений, а также, благодаря повышенному содержанию влаги, имеет более низкое сопротивление. Такая особенность очень часто позволяет значительно снизить сопротивление заземляющего устройства.

Горизонтальные электроды применяются для соединения вертикальных, также они способствуют ещё большему снижению сопротивления. Но могут использоваться и в качестве самостоятельного решения, когда монтаж вертикальных штырей сопряжен с трудностями, либо когда необходимо организовать заземляющее устройство определенного типа, например, сетку.

Нестандартные способы

В тяжелых каменистых и вечномерзлых грунтах монтаж традиционного заземления сопряжен с рядом проблем, начиная сложностью монтажа из-за специфики местности, заканчивая огромными размерами заземляющего устройства (соответственно — большими объемами строительных работ), необходимыми для соответствия его сопротивления нормам.

В условиях вечномерзлого грунта также имеет место такое явление как выталкивание, в результате которого горизонтальные электроды оказываются над поверхностью уже через год.

Чтобы решить эти проблемы, специалисты часто прибегают к следующим мерам:

  • Замена необходимых объёмов на грунт с низким удельным сопротивлением (несет ограниченную пользу в случае вечномерзлого грунта, т.к. грунт замены также промерзает). Объемы такого грунта часто очень велики, и не всегда приводят к ожидаемым результатам, т.к. зона действия заземлителя вглубь практически равна его горизонтальным размерам, поэтому влияние верхнего слоя может быть незначительным.
  • Организация выносного заземлителя в очагах с низким удельным сопротивлением, что позволяет установить заземлитель на удалении до 2 км.
  • Применение специальных химических веществ – солей и электролитов, которые снижают удельное сопротивление мерзлого грунта. Данное мероприятие необходимо проводить раз в несколько лет из-за процесса вымывания.

Одним из наиболее предпочтительных решений в тяжелых условиях является электролитическое заземление, оно сочетает химическое воздействие на грунт (снижение его удельного сопротивления) и замену грунта (уменьшение влияния промерзания). Электролитический электрод наполнен смесью минеральных солей, которые равномерно распределяются в рабочей области и снижают её удельное сопротивление. Данный процесс стабилизируется с помощью околоэлектродного заполнителя, который делает процесс выщелачивания солей равномерным. Применение электролитического заземления позволяет избежать проблем организации традиционного заземляющего устройства, значительно уменьшает количество оборудования, габариты заземлителя и объёмы земляных работ.

Заключение

При проектировании заземляющего устройства необходимо иметь достоверные данные об удельном сопротивлении грунта на месте строительства. Точную информацию можно получить только с помощью изысканий и измерений на местности, но по разным причинам бывает, что возможности их провести нет. В таком случае можно воспользоваться справочными таблицами, но стоит принять во внимание, что расчёт будет носить ориентировочный характер.

Независимо от того, каким образом получены значения удельного сопротивления, нужно внимательно рассматривать все влияющие факторы. Важно учесть пределы, в которых удельное сопротивление может меняться, чтобы сопротивление заземляющего устройства никогда не превышало норму.

Источник



Большая Энциклопедия Нефти и Газа

Плотность — защитный ток

Плотность защитного тока существенно зависит от состояния покрытия поверхности. При использовании эффективных лакокрасочных материалов требуемый защитный ток обычно существенно уменьшается. Особенно благоприятны реактивные ( отверждающиеся) смолы, например покрытия типа каменноугольный пек — эпоксидная смола, которые и применяются в настоящее время на большинстве портовых сооружений. Они обладают химической стойкостью в водах различного состава и не разрушаются даже при обрастании. При толщине 0 4 — 0 6 мм электрическое сопротивление таких покрытий получается довольно высоким; обеспечивается также высокая стойкость против катодного образования пузырьков и очень хорошая механическая износостойкость. [1]

Плотность защитного тока для стали, как показали опыты В. Л. Хейфица и Б. М. Идельчика ( табл. 52), во много раз превышает плотность коррозионного тока. [2]

Плотность защитного тока , как критерий катодной защиты стали, с достаточной точностью может быть определена на макромодели гальванического элемента. Моделью служит железная пластина с анодными ( очищенное железо) и катодными ( окалина) участками. При изменяющейся плотности катодного тока измеряют катодную и анодную поляризации и по найденным величинам строят эквипотенциальные кривые. Поляризационные кривые пересекаются в точке, которая соответствует плотности эффективного защитного тока. [4]

Плотность защитного тока зависит как от состава и количества солей, растворимых в воде, так и от температуры воды, скорости ее движения и других факторов. [5]

Плотности защитного тока на отдельных участках трубопровода получаются гораздо более низкими, чем при работе без такого контакта ( верхняя часть рис. 3.24), за исключением того участка, где образовался низкоомный контакт с посторонним сооружением. Очевидно, что на этом участке сопротивление изоляционного покрытия соответственно мало. На прочих участках трубопровода сопротивления изоляции имеют такой же порядок величин, как и при работе без контакта. Если бы был закорочен изолирующий фланец, то значения потенциалов получились бы почти такими же, но при большей силе тока в пункте измерений с координатой 27 210 км. [6]

При сред-ней плотности защитного тока 2 5 мА — м — 2 и общей площади поверхности фундаментов в грунте около 95 000 м2 их поляризация обеспечивается током около 200 А, подводимым через семь глубинных анодных заземлителей от шести станций катодной защиты. [8]

Определение средней величины плотности защитного тока производится как отношение тока электрозащитной установки к суммарной поверхности газопровода. [9]

Все это позволяет уменьшать плотность защитного тока ( так как ослабляется деятельность коррозионных микроэлементов) и облегчает распределение тока по поверхности катода. [10]

Учет зависимости поляризационного сопротивления от плотности защитного тока позволяет более точно определить зону защитного действия катодной установки без учета поляризационного сопротивления. [11]

Опыт показывает, что прд плотности защитного тока около 200мкА — м — 2 не возникает практически никаких трудностей в смысле распределения защитного тока ( если не считать некоторых особых случаев) ни при обычной укладке резервуаров-хранилищ в земле, ни при их укладке на фундамент с предохранением от всплытия в грунтовых водах, ни при их укладке на грунтовую опалубку. Напротив, при более высокой плотности ( во много раз) защитного тока и значительной затрудненности его подвода, например при грунтовой опалубке с пластмассовым ( полимерным) покрытием, защитное действие может быть ограничено. [12]

Согласно выражению ( 5.3) плотность защитного тока Js в формуле (23.14) и (5.20) приводит к снижению потенциала на 0 3 В. [14]

На верхней части рисунка значения плотности защитного тока и сопротивления изоляционного покрытия на отдельных участках между станцией катодной защиты и изолирующим фланцем примерно одинаковы. При этом около 25 % подведенного защитного тока возвращается от изолирующего фланца к минусовой клемме станции катодной защиты. [15]

Источник