Меню

Защита по току линейных стабилизаторов

Линейный стабилизатор напряжения или тока LM317

  • Цена: $1.81 за 10 шт.
  • Перейти в магазин

Здравствуйте. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такой стабилизатор стоит на порядок больше, поэтому меня и заинтересовал этот лот. Решил проверить, что продаётся по такой цене и оказалось, что стабилизатор вполне качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересовавшихся прошу…

Немного теории:

Стабилизаторы бывают линейные и импульсные.
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади.
Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток — низкий КПД, большое тепловыделение.
Импульсный стабилизатор напряжения — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивлением, а значит, может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.
Преимущество импульсного стабилизатора — высокий КПД, низкое тепловыделение.
Недостаток — бОльшее количество элементов, наличие помех.

Герой обзора:

Лот состоит из 10 микросхем в корпусе ТО-220. Стабилизаторы пришли в полиэтиленовом пакете, обмотанным вспененным полиэтиленом.
Сравнение с наверно самым известным линейным стабилизатором 7805 на 5 вольт в таком же корпусе.

Тестирование:
Подобные стабилизаторы выпускаются многими производителями, вот ссылка на руководство от Texas Instruments.
Расположение ножек следующее:1 — регулировка;
2 — выход;
3 — вход.
Собираем простейший стабилизатор напряжения по схеме из руководства:Вот что удалось получить при 3 положениях переменного резистора:Результаты, прямо скажем так, не очень. Стабилизатором это назвать язык не поворачивается.
Далее я нагрузил стабилизатор 25 Омным резистором и картина полностью преобразилась:
Далее я решил проверить зависимость выходного напряжения от тока нагрузки, для чего задал входное напряжения 15В, подстроечным резистором выставил выходное напряжение около 5В, и выход нагрузил переменным 100 Омным проволочным резистором. Вот что получилось:Ток более 0,8А получить не удалось, т.к. начало падать входное напряжение (БП слабый). В результате этого тестирования, стабилизатор с радиатором нагрелся до 65 градусов:
Для проверки работы стабилизатора тока, была собрана следующая схема:Вместо переменного резистора я использовал постоянный, вот результаты тестирования:Стабилизация по току тоже хорошая.
Ну и как обзор может быть без сжигания героя? Для этого я собрал снова стабилизатор напряжения, на вход подал 15В, выход настроил на 5В, т.е. на стабилизаторе упало 10В, и нагрузил на 0,8А, т.е. на стабилизаторе выделялось 8Вт мощности. Радиатор убрал.
Результат продемонстрировал на следующем видео:

Да, защита от перегрева тоже работает, сжечь стабилизатор не удалось.

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в известном российском интернет магазине за 19 рублей, что существенно дороже обозреваемого.

На сём разрешите откланяться, удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Источник

Линейный стабилизатор напряжения с защитой

Линейный стабилизатор напряжения с защитой, стабилизированные источники питания можно найти почти в каждом устройстве, за исключением тех которые с батарейным питанием. Немногие сегодня могут представить себе какую-либо электронику, содержащую микросхемы (логические или аналоговые), без использования стабилизированного источника питания. Что же, это логично, ведь современные стабилизаторы очень дешевы и польза от использования стабилизированного блока питания неоспорима.

Стабилизация может значительно облегчить проектирование любой схемы, потому что мы не зависим от колебаний напряжения, которые следует принимать во внимание. Но мы также можем легко устранить влияние колебаний напряжения питания на функцию схемы с помощью несовершенной фильтрации (что экономит деньги на все еще относительно дорогие электролитические конденсаторы).

Линейный стабилизатор напряжения с защитой

Линейный стабилизатор напряжения с защитой позволяет владельцу не беспокоиться о питании и стабилизации при разработке любой схемы, которая в подавляющем большинстве случаев зависит от потребностей разрабатываемого оборудования. Просто дотянитесь до лабораторного источника, установите желаемое значение выходного напряжения и подключите тестируемую схему. Кроме того, лабораторные источники питания имеют ограничение выходного тока либо в виде предохранителя, который защищает питание проверяемой схемы после превышения установленного тока, либо в виде ограничителя тока. Теперь предоставляем схему линейный стабилизатор напряжения с защитой от 2 до 30В и ток до около 2А.

Принципиальная схема линейный стабилизатор напряжения с защитой

Вся схема основана на проверенной микросхеме серии 723. Это интегрированный стабилизатор, самым большим преимуществам которого является возможность настройки выходного напряжения и тока с очень хорошей стабильностью параметров и низким собственным потреблением энергии. Микросхема содержит свой собственный источник опорного напряжения 7,15 ± 0,2В отделены от других цепей, поэтому он позволяет использовать его в самых разных целях. Кроме того, внутренняя структура имеет усилитель отклонения и выходной транзистор с регулировкой. Сообщается, что стабильность выходного напряжения лучше 1,5 · 10 -4 в диапазоне температур от 0 C до 70 C.

Это, самое простое решение, если мы хотим регулировать напряжение и ток. Напряжение получается с источника опорного напряжения с помощью делителя R2 / R3, и это напряжение к не инвертирующему входу усилителя внутреннего отклонения после фильтрации посредством конденсатора С2. Напряжение для инвертирующего входа (вывод 4) получается с выхода через потенциометр P2 и резистор R6.

Если потенциометр закорочен, выходное напряжение находится непосредственно на инвертирующем входе, поэтому оно должно быть точно 2В, когда усилитель ошибки сбалансирован. При использовании допусков выходное напряжение может находиться в диапазоне от 27В до 40В, что больше не допускается источником. Значение R6 было выбрано таким образом, чтобы даже потенциометр приближался к нижнему пределу значения. Поскольку выходное напряжение еще нужно проверять вольтметром, этот недостаток не так серьезен. Конденсатор C3 компенсирует частотную характеристику внутреннего усилителя, тем самым предотвращая возможность возбуждения, вызванных большим усилением обратной связи.

Выход IO1 (вывод 10) может выдавать ток 150 мА, что недостаточно для наших целей, поэтому необходимо использовать силовой транзистор T1. Конденсатор С4 устраняет возможные возбуждения, которые могут возникнуть в транзисторе. Управление током осуществляется с помощью резисторов R7, R8 в эмиттере T1. Потери, возникающие на этих резисторах, увеличенные напряжением перехода EB, подаются через потенциометр P1 и защитный резистор R4 на внутренний управляющий транзистор.

Для применения ограничителя тока напряжение между выводами 2 и 3 IO1 должно быть больше 0,65В. Следовательно, в крайнем левом положении потенциометра для получения этого напряжения достаточно тока около 20 мА. После этого делитель P1 / R5 устанавливается в нормальное положении, и в результате получается ток около 2А, опять же при номинальных значениях компонентов. Изменяя резистор R5, мы можем влиять на ток. Поскольку нам необходимо достаточное напряжение даже при малых токах, сопротивление R7, R8 не может быть слишком маленьким, но это, в свою очередь, приводит к большим потерям мощности при больших токах. Итак, компромисс из двух резисторов, расположенных параллельно. Перед выходной клеммой подключен диод D3, который должен защищать цепь при выключении или уменьшении выхода от проникновения более высокого напряжения от приборов с большой входной мощностью.

Линейный стабилизатор напряжения с защитой состоит из стандартного выпрямителя с хорошей фильтрацией. Трансформатор должен иметь выходное напряжение 24-28В, тогда блок питания сможет нормально работать. При более высоких напряжениях возникнут проблемы с источником питания микросхемы 723. Она имеет максимально допустимое напряжение всего 40В, и поэтому в ее источник питания установлен резистор R1 и стабилитрон D2 39В. Поэтому с точки зрения надежности и безопасности работы более целесообразно выбирать более низкое напряжение питания и желать использовать максимальное напряжение при максимальном токе. Как видно из представленных рисунков, линейный стабилизатор напряжения с защитой действительно очень простой. Печатные платы и расположение компонентов приведены на рисунках ниже.

Читайте также:  Частные токи в электрической схеме

Расположение компонентов на плате линейный стабилизатор напряжения с защитой

Разводка печатной платы

После монтажа устанавливаем схему в выбранный подходящий корпус. Здесь нужно так же учитывать охлаждение. Регулирующий транзистор необходимо установить на радиатор достаточных размеров для лучшего охлаждения. Мы просто должны иметь в виду, что в экстремальных условиях — низкое выходное напряжение и большой ток — транзистор вырабатывает более 40Вт, и это тепло должно уйти очень быстро. Температура транзистора может подняться выше допустимого предела, и он может выйти из строя. Может случиться так, что понадобится вентилятор, и тогда может пригодиться простой терморегулятор. Настройка фактически заключается только в проверке параметров. Однако это применимо только в том случае, если во время монтажа не допущено никаких ошибок.

Если мы действительно хотим использовать стабилизатор как лабораторный источник, уместно будет встроить прибор в хороший корпус и выбрать подходящий трансформатор. Из-за того, что каждый будет использовать источник для разных целей, трансформатор не рассматривается, что также относится к корпусу, который может подойти под реально выбранный трансформатор.

Источник

Простые линейные стабилизаторы тока для светодиодов своими руками

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Стабилизатор для светодиодов

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Светодиодный светильник со стабилизацией тока

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

LED-светильник со стабилизатором тока

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Стабилизатор тока светодиодов

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Стабилизатор тока для светодиодов на полевом транзисторе (схема)

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см 2 .

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Стабилизатор (генератор) тока на полевом транзисторе КП303Е

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Выходная характеристика полевого транзистора

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Генератор (стабилизатор) тока на MOSFET

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

Читайте также:  Есть ли ток в кабеле от телевизора

TL431

Схема включения TL431 в качестве стабилизатора тока

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

Схема светильника без пульсаций (LED-лампа на TL431)

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник



Пять особенностей линейных стабилизаторов, о которых нужно знать

С первого взгляда линейные регуляторы (LDO) кажутся достаточно простыми компонентами, однако очень часто возникают ситуации, когда они работают нештатно. В данной статье рассматриваются пять особенностей стабилизаторов: поведение LDO при запуске, потребление LDO при малых входных напряжениях, особенности отклика LDO при изменении нагрузки, влияние собственного шума и PSRR стабилизатора на общий выходной шум, а также реализация входной защиты LDO. Понимание этих особенностей делает выбор стабилизатора более осознанным и упрощает процесс отладки. Приводятся примеры интегральных стабилизаторов производства Maxim Integrated, в которых учтены перечисленные особенности.

В настоящий момент выбор подходящего линейного стабилизатора зачастую заключается в просмотре бесконечных таблиц с применением параметрических фильтров. Какое выходное напряжение нужно? Каков максимальный нагрузочный ток? Каково предельно допустимое входное напряжение? Какой диапазон входных напряжений требуется? Какое следует выбрать корпусное исполнение? Какие габариты будут у компонентов обвязки? Перечень подходящих регуляторов может быть уменьшен с учетом дополнительных параметров. Например, что если нагрузка чувствительна к колебаниям напряжения питания? Тогда стабилизатор должен обладать очень малым собственным шумом и высоким коэффициентом подавления нестабильности питания (PSRR). Если же разрабатывается устройство с батарейным питанием, то потребуется регулятор со сверхмалым уровнем потребления.

С учетом перечисленных требований исходный список стабилизаторов сократится до нескольких подходящих моделей. Но это еще не все. Перед тем как сделать окончательный выбор, нужно ответить еще на пять вопросов:

  • Как регулятор ведет себя при запуске?
  • Останется ли ток потребления малым, если входное напряжение окажется на нижней границе рабочих напряжений (или даже меньше)?
  • Как ведет себя стабилизатор при изменении нагрузки?
  • Что является основным источником выходного шума: собственный шум стабилизатора или внешний шум из-за малого значения PSSR?
  • Как стабилизатор ведет себя при выключении?

Эти вопросы могут показаться не такими важными, пока не возникнут проблемы. Но когда проблемы появятся вы, скорее всего, почувствуете себя обманутым или, по крайней мере, недостаточно осведомленным. Придется потратить дополнительное время на устранение неполадок и, возможно, на доработку своей платы.

Попробуем пролить свет на эти вопросы. Возможно, предложенная информация будет полезна в ближайшем будущем при очередном выборе линейного регулятора.

Запуск

Многие стабилизаторы имеют вход разрешения, с помощью которого можно включать и выключать регулятор при необходимости экономии энергии. Обычно в таких стабилизаторах есть также функция плавного запуска (Soft Start). Плавный запуск предотвращает перегрузку регулятора при включении. Данная функция может быть реализована двумя способами.

Плавный запуск с ограничением тока

Первый способ – плавный запуск с ограничением тока (Current Soft Start). В большинстве регуляторов существует ограничение выходного тока. Функция плавного запуска заключается в плавном или пошаговом увеличении тока ограничения при запуске (рисунок 1). При этом выходное напряжение будет плавно нарастать, так как ток заряда выходного конденсатора оказывается меньше, чем максимально допустимый нагрузочный ток стабилизатора. Преимущество данного подхода заключается в том, что входной ток регулятора будет плавно увеличиваться согласно заданному шаблону, и помехи от пускового тока нагрузки не будут передаваться на вход стабилизатора.

Рис. 1. Временные диаграммы режимов плавного запуска с ограничением тока и напряжения

Рис. 1. Временные диаграммы режимов плавного запуска с ограничением тока и напряжения

Анализируя переходные процессы при включении стабилизатора, можно обнаружить, что на осциллограмме выходного напряжения есть точки перелома, в которых напряжение начинает уменьшаться. Рассмотрим эту особенность подробнее. После включения линейного регулятора происходит заряд выходного конденсатора и питание нагрузки. Если выходной ток превышает значение тока ограничения, напряжение на нагрузке падает ниже определенного уровня и происходит его возврат в состояние сброса. Далее цикл повторяется, и нагрузка то включается, то выключается. В конце концов, значение тока ограничения становится достаточно высоким, чтобы обеспечить необходимый ток, и схема начинает работать в штатном режиме.

Плавный запуск с ограничением напряжения

Второй способ – плавный запуск с ограничением напряжения (Voltage Soft Start). При таком подходе выходное напряжение увеличивается плавно и линейно, без каких-либо скачков при включении (рисунок 1). Подобное поведение также защищает нагрузку от повторных сбросов, так как напряжение пересекает пороговую точку сброса один раз.

В данном случае пусковой ток определяется выходной емкостью, скоростью нарастания выходного напряжения и током, потребляемым нагрузкой. Как правило, скорость нарастания выходного напряжения устанавливается на уровне, который обеспечивает пусковой ток в диапазоне 1…10% от максимального выходного тока (при использовании рекомендованного минимального выходного конденсатора). Установка пускового тока на уровне менее 10% позволяет использовать выходные конденсаторы большей емкости и компенсировать повышенный ток нагрузки. Недостатком системы запуска с ограничением напряжения является то, что входной ток зависит от нагрузки и не контролируется напрямую. А ее преимущество заключается в отсутствии множественных переходов нагрузки в состояние сброса.

На рисунке 1 представлено сравнение временных диаграмм режимов плавного запуска с ограничением тока и с ограничением напряжения.

Увеличение тока потребления при работе с малыми входными напряжениями

Если схема питается от аккумулятора, то величина собственного потребления стабилизатора имеет большое значение. Нагрузка может находиться в активном состоянии в течение краткого интервала времени, а потом надолго переходить в режим ожидания, экономя энергию. В этом случае время автономной работы будет в значительной степени определяться собственным потреблением регулятора. Если это так, вы, скорее всего, выберете линейный регулятор с минимальным питающим током.

Читайте также:  Все виды мощности переменного тока

Теперь представьте, что ваша аккумуляторная батарея разряжена до такой степени, что разница между входным и выходным напряжением стабилизатора становится минимальной. При работе в таком режиме стабилизатор старается как можно сильнее открыть внутренний силовой транзистор, чтобы обеспечить минимальное падение напряжения, даже если выходной ток нагрузки очень мал. Проблема заключается в том, что «усиленное» открывание транзистора приведет к увеличению потребления схемы управления затвором (рисунок 2). В результате режим ожидания превращается в режим быстрой разрядки батареи.

Рис. 2. Увеличение тока потребления при работе с малыми входными напряжениями из-за роста потребления схемы управления затвором силового транзистора

Рис. 2. Увеличение тока потребления при работе с малыми входными напряжениями из-за роста потребления схемы управления затвором силового транзистора

Подобное увеличение тока при работе с малыми входными напряжениями – не редкость даже для самых лучших стабилизаторов. Двукратный рост потребления не является чем-то необычным, а некоторые регуляторы характеризуются увеличением потребления в 10 раз и более. Иногда информация об увеличении потребляемого тока при работе с малыми входными напряжениями приводится в документации в виде таблиц и графиков. Однако чаще всего эта информация отсутствует.

Если в конкретном приложении величина тока потребления имеет большое значение, следует выбирать стабилизатор, для которого в документации приведена подробная информация об этом параметре или самостоятельно измерять уровень тока, чтобы убедиться, что регулятор отвечает предъявляемым требованиям.

Отклик стабилизатора на изменение нагрузки

Линейные регуляторы имеют возможность стабилизации выходного напряжения при изменении нагрузки. Когда происходит изменение нагрузки, напряжение на затворе встроенного силового транзистора также должно измениться. Время, необходимое для того чтобы напряжение на затворе достигло нового значения, обычно определяет уровень перерегулирования и недорегулирования.

Обычно быстрый переход к полной нагрузке является худшим случаем с недорегулированием выходного напряжения. Перед сравнением динамических характеристик регуляторов всегда следует проверять значения начальных токов. Переход от нагрузки 10% к нагрузке 100% будет более быстрым, чем переход от начальной нагрузки 1% к нагрузке 100%, так как в первом случае выходное напряжение будет ближе к конечному значению. Гораздо труднее добиться хороших показателей при переходе от состояния с нулевой нагрузкой к полной нагрузке.

Можно предположить, что поддержание некоторого минимального тока нагрузки поможет избежать значительной задержки при включении максимальной нагрузки. Да, поможет, но это не всегда является хорошим решением. Дело в том, что при обратном переходе от полной нагрузки к минимальной часто возникает перерегулирование выходного напряжения. При этом регулятор находится в наиболее уязвимом состоянии, в котором его внутренний силовой транзистор полностью отключен. Если в этот момент нагрузка вновь увеличится, то будет наблюдаться недорегулирование, которое окажется еще более значительным, чем при первоначальном переходе.

Если работа схемы предполагает наличие быстрых перепадов нагрузки, следует проверять динамические характеристики стабилизаторов с использованием описанного выше алгоритма. На рисунке 3 показано ухудшение отклика регулятора при повторном быстром увеличении нагрузки.

Рис. 3. Ухудшение отклика регулятора при повторном быстром увеличении нагрузки

Рис. 3. Ухудшение отклика регулятора при повторном быстром увеличении нагрузки

Собственный шум стабилизатора и коэффициент подавления помех по питанию (PSRR)

Регуляторы, предназначенные для создания малошумящих приложений, как правило, обладают и высоким значением коэффициента подавления нестабильности питания (PSRR). Это логично, так как чувствительность нагрузки к помехам не зависит от причины их возникновения.

Если стабилизатор подключен к импульсному регулятору, то малый коэффициент PSRR может создать больше проблем, чем собственный выходной шум стабилизатора. Рассмотрим случай совместного использования стабилизатора с понижающим импульсным регулятором для питания чувствительной к шуму нагрузки. Если на частоте 100 кГц пульсации выходного напряжения импульсного преобразователя составляют 50 мВ (от пика до пика), а величина PSRR линейного регулятора на той же частоте 100 кГц равна 60 дБ, то на выходе стабилизатора будут наблюдаться пульсации 50 мкВ (от пика до пика), что эквивалентно среднеквадратичному выходному шуму 15 мкВ. Допустим, выбран малошумящий стабилизатор, для которого в полосе частот 10 Гц…100 кГц собственный выходной шум составляет менее 5 мкВ (среднеквадратичное значение). Тогда окажется, что шум из-за входных пульсаций от DC/DC-преобразователя и малого PSRR будет в три раза выше собственного шума стабилизатора (рисунок 4).

Рис. 4. Общий выходной шум определяется вкладом PSRR

Рис. 4. Общий выходной шум определяется вкладом PSRR

При работе с высокими выходными напряжениями собственный шум линейного регулятора может преобладать над PSRR. Это связано с тем, что собственный шум увеличивается в соответствии с делителем обратной связи. Рассмотрим схему, в которой линейный регулятор используется для преобразования зашумленного напряжения 17 В от повышающего DC/DC-преобразователя в напряжение 16 В с уровнем пульсацией менее 100 мВ. Если PSRR стабилизатора на частоте переключений составляет 60 дБ, то пульсации 50 мВ (от пика до пика) от повышающего преобразователя будут ослаблены до 50 мкВ (от пика до пика) или 15 мкВ (ср.кв.) на выходе. Шум 5 мкВ (ср.кв.) встроенного опорного источника может показаться малым и не представляющим опасности. Однако если сигнал обратной связи уменьшается до 1,25 В, а напряжение на резисторе обратной связи 16 В, то выходной шум составит 5 мкВ × (16 В/1,25 В) или 64 мкВ (ср.кв). Таким образом, собственный шум стабилизатора будет вносить основной вклад в общий выходной шум (рисунок 5).

Рис. 5. Увеличение выходного шума при работе с высокими напряжениями

Рис. 5. Увеличение выходного шума при работе с высокими напряжениями

При поиске оптимального стабилизатора для чувствительной нагрузки следует учитывать как выходной шум, так и PSRR.

Защита входа

Обычно в линейных регуляторах присутствует обратный диод, встроенный в силовой МОП-транзистор. Из-за этого диода выходное напряжение не может превышать входное напряжение больше, чем на 0,7 В. В большинстве случаев этот диод не влияет на работу стабилизатора, но есть два случая, когда он может создать проблемы.

Защита от обратного напряжения

Иногда возникают ситуации, когда на вход устройства подается напряжение питания обратной полярности, например, при использовании стандартных батареек. Хотя разъем для установки батареек в отсеке питания имеет особую формовку выводов и защищает от неправильного подключения, тем не менее, он не гарантирует полную защиту и допускает возможность ошибки с возникновением кратковременных обратных напряжений.

Защита от обратной полярности позволяет напряжению на входе быть меньше напряжения на выводе земли без существенного увеличения тока. Для этого необходимо отключить встроенный диод силового транзистора с помощью дополнительного последовательного ключа. У большинства регуляторов на входе есть диоды, защищающие от обратной полярности и электростатических разрядов (ESD). Их также необходимо исключить и использовать специализированную схему защиты (рисунок 6).

Рис. 6. Защита от обратного напряжения

Рис. 6. Защита от обратного напряжения

Примером стабилизатора с защитой от обратной полярности является MAX1725, который способен выдерживать обратные напряжения до -12 В без значительного увеличения входного тока.

Защита от обратного тока

Очень часто защиту от обратного тока в линейных регуляторах путают с защитой от обратного напряжения. Хотя для ее реализации также требуется блокировка встроенного диода силового транзистора, тем не менее, механизм защиты имеет значительные отличия. На рисунке 7 показано как работает схема защиты от обратного тока.

Рис. 7. Защита от обратного тока

Рис. 7. Защита от обратного тока

Рассмотрим случай, когда значительная емкостная нагрузка, например, аудиосистема со множеством развязывающих конденсаторов, питается от линейного регулятора. Предположим также, что линейный регулятор, в свою очередь, питается от мощного понижающего преобразователя. Кроме того, при выключении выход импульсного преобразователя замыкается на землю. Вполне ожидаемо, что при первом же выключении линейный регулятор выйдет из строя, так как конденсаторы нагрузки начнут одновременно разряжаться, и ток будет протекать через встроенный диод силового транзистора стабилизатора.

В линейных регуляторах с защитой от обратного тока эта проблема решена. В них внутренний диод отключается, если уровень входного напряжения падает ниже выходного. Если до этого стабилизатор находился в рабочем состоянии, то силовой транзистор отключится не сразу, и некоторое время ток будет течь в обратном направлении. Стоит отметить, что данная функция защищает от протекания тока от выхода ко входу, и не ограничивает входной ток при приложении входного напряжения обратной полярности.

Примером стабилизатора с защитой от обратного тока является MAX8902, который блокирует обратный разрядный ток выходных конденсаторов нагрузки, если вход закорочен на землю.

Заключение

Рассмотренные в статье особенности линейных регуляторов могут оказаться чрезвычайно важными для многих приложений. К сожалению, они редко учитываются в параметрическом поиске. Кроме того, по предоставляемой документации не всегда удается определить, какой набор функций имеет тот или иной стабилизатор. Тем не менее, знание возможных потенциальных проблем делает выбор оптимального регулятора более осознанным.

Источник

Adblock
detector