Меню

Закон ома для участка цепи не содержащей источника тока

Закон ома для участка цепи не содержащей источника тока

Закон Ома для участка цепи, не содержащего источника ЭДС

Закон (правило) Ома для участка цепи, не содержащего источник ЭДС, устанавливает связь между током и напряжением на этом участке. Применительно к рис. 3.14

,

или

. (3.17)

3.2.4. Закон Ома для участка цепи, содержащего источник ЭДС

Закон (правило) Ома для участка цепи, содержащего источник ЭДС, позволяет найти ток этого участка по известной разности потенциалов на концах участка цепи и имеющейся на этом участке ЭДС Е. Так, по уравнению (3.16) для схемы рис. 3.14а

;

по уравнению (3.16а) для схемы рис. 3.15б

.

В общем случае

(3.17а)

Уравнение (3.17а) математически выражает закон Ома для участка цепи, содержащего источник ЭДС; знак плюс перед Е соответствует рис. 3.15а, знак минус рис. 3.15б. В частном случае при Е = О уравнение (3.17а) переходит в уравнение (3.17).

Законы Кирхгофа

Все электрические цепи подчиняются первому и второму законам (правилам) Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко:

алгебраическая сумма токов, подтекающих к любому узлу схемы,
равна нулю;

сумма подтекающих к любому узлу токов равна сумме утекаю­щих от узла токов.

Применительно к рис. Рис. 3.17, если подтекающие к узлу токи считать положительными, а утекающие отрицательными, то согласно пер­вой формулировке

согласно второй

. (3.18)

Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

Pиc. 3.16 Рис. 3.17 Рис. 3.18 Рис. 3.19

Если мысленно рассечь любую схему произвольной плоскостью и все находя­щееся по одну сторону от нее рассматривать как некоторый большой «узел», те алгебраическая сумма токов, входящих в этот «узел», будет равна нулю.

Второй закон Кирхгофа также можно сформулиро­вать двояко:

1) алгебраическая сумма падений напряжения в любом замкнутом
контуре равна алгебраической сумме ЭДС вдоль того же контура:

. (3.19)

(в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений (не падений напряжения)
вдоль любого замкнутого контура равна нулю:

(3.19а)

Для периферийного контура схемы рис. 4.18

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Сделаем два замечания: 1) запись уравнения по второму закону Кирхгофа в фор­ме (3.19) может быть получена, если обойти какойлибо контур некоторой схемы я записать выражение для потенциала произвольной точки этого контура через по­тенциал этой же точки (взяв ее за исходную при обходе) и падения напряжения и ЭДС; 2) при записи уравнений по второму закону Кирхгофа в форме (3.19а) напряжения участков цепи включают в себя ‘и падения напряжения участков, и имеющиеся на этих участках ЭДС.

Резонанс токов Резонансный режим, возникающий при параллельном соединении R, L, C, называется резонансом токов. В отличие от рассмотренного ранее режима резонанса напряжений, данный режим не столь однозначен.

Источник

Закон Ома для участка цепи, не содержащего источника ЭДС.

Закон (правило) Ома для участка цепи, не содержащего источник ЭДС, устанавливает связь между током и напряжением на этом участке. Применительно к рис. 2.5

Закон Ома для участка цепи, содержащего источник ЭДС. Обобщенный закон Ома.

Закон (правило) Ома для участка цепи, содержащего источник ЭДС, позволяет найти ток этого участка по известной разности потенциалов а — φс) на концах участка цепи и имеющейся на этом участке ЭДС Е. Так, по уравнению (2.2) для схемы рис. 2.6а

по уравнению (2.3) для схемы рис. 2.6б

(2.5)

Уравнение (2.5) математически выражает закон Ома для участка цепи, содержащего источник ЭДС:

— знак плюс перед Е соответствует рис. 2.5а ;

знак минус — рис. 2.5б.

В частном случае при E = 0 уравнение (2.5) переходит в уравнение (2.4).

Неразветвленные и разветвленные электрические цепи.

Электрические цепи подразделяют на неразветвленные и разветвленные. На рис. 2.6а, а представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рис. 2.6 б; в ней имеются три ветви и два узла. В каждой ветви течет свой ток.

Ветвь — участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами.

Читайте также:  Потребляемая сила тока холодильника

Узел — это точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рис. 2.6в), то в этом месте есть электрическое соединение двух линий, в противном случае (рис. 2.6г) его нет.

Кроме термина «узел» иногда используют термин «устранимый узел». Под устранимым узлом понимают точку, в которой соединены два последовательных сопротивления (рис. 2.6д). Этим понятием пользуются при введении данных в ЭВМ о значении и характере сопротивлений.

Последовательное соединение элементов —это соединение элементов, в которых протекает один и тот же ток (рис.2.6а).

Это соединение элементов можно заменить одним эквивалентным сопротивлением, вычисленным по формуле:

Эквивалентная проводимость определяется по формуле:

Параллельное соединение элементов – это соединение элементов, когда напряжение на каждом из элементов имеет одно и тоже значение.

Это соединение элементов можно заменить одним эквивалентным сопротивлением, вычисленным по формуле:

Эквивалентная проводимость определяется по формуле:

Смешанное соединение резистивных элементов

При наличии в цепи только одного источника ЭДС внешнюю по отношению к источнику часть электрической цепи можно в большинстве случаев рассматривать как смешанное (последовательно-параллельное) соединение элементов.

В приведенной схеме (рис.2.7) несколько резистивных элементов, которые соединены параллельно.

Расчет смешанного соединения нужно начинать с определения эквивалентной проводимости g каждого параллельно соединенного резистивного элемента, то есть подключенных к одной и той же паре узлов. В схеме

эквивалентная проводимость равна:

После замены параллельного соединения резистивных элементов эквивалентным резистивным элементом с сопротивлением (рис.2.12) получается эквивалентная схема с последовательным соединением двух резистивных элементов r1 и rэ.

Дата добавления: 2018-05-12 ; просмотров: 942 ; Мы поможем в написании вашей работы!

Источник

Закон Ома для участка цепи простым языком

Вся прикладная электротехника базируется на одном догмате — это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

Диаграмма, упрощающая запоминание

Диаграмма, упрощающая запоминание

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.

Однородный открытый участок электроцепи

Однородный открытый участок электроцепи

Формула в интегральной форме будет иметь следующий вид:

Формула в интегральной форме

Формула в интегральной форме

То есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

Схема с подключенным с источником

Схема с подключенным с источником

Учитывая «r» ЭДС, формула предстанет в следующем виде:

Учитывая «r» ЭДС

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет меньше ЭДС, определить его можно по формуле:

Напряжение будет меньше ЭДС

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.

Схема неоднородного участка

Схема неоднородного участка

Формула для такого участка (обобщенный закон) будет иметь следующий вид:

Формула для неоднородного участка цепи

Формула для неоднородного участка цепи

Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Упрощенный вид закона

Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Практическое использование

Видео: Закон Ома для участка цепи — практика расчета цепей.

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

Применяем закон к любому участку цепи

Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.
Читайте также:  Опаснее переменный или постоянный ток для человека ответ

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольтамперной характеристики

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Источник



Всё об энергетике

Электротехника. Основы. Закон Ома

В электротехнике, как и в любой другой науке, существуют базовые понятия, без понимания которых не удастся овладеть этой областью знаний. Здесь такими понятиями являются электрическое напряжение, электрический ток и электрическое сопротивление.

Закон Ома

Закон Ома был открыт в результате экспериментов Георга Ома с гальванометром и простой электрической цепью из источника ЭДС и сопротивления. Со временем формула полученная Омом претерпела несколько изменений.

Читайте также:  Асинхронные тяговые двигатели переменного тока

Закон Ома для участка цепи без ЭДС

Может быть сформулирован через сопротивление [1, стр.33][2, стр.15]:

  • I — ток через участок ab электрической цепи;
  • Uab — напряжение на участке ab электрической цепи;
  • R — сопротивление участка ab электрической цепи.

Или через проводимость:

  • G — проводимость участка ab электрической цепи.

Формула (1, 2) справедлива для электрической цепи представленной ниже на рисунке 1.

Рисунок 1 — Участок цепи без ЭДС

Закон Ома для участка цепи содержащего ЭДС

Или обобщённый закон Ома. Формулируется следующим образом [1, стр.34][2, стр.17]:

  • I — ток через участок ac электрической цепи;
  • Uab — напряжение на участке ab электрической цепи;
  • E — ЭДС на участке электрической цепи;
  • R — сопротивление участка ab электрической цепи.

Или через проводимость:

  • G — проводимость участка ab электрической цепи.

Формула (3, 4) справедлива для электрической цепи представленной ниже на рисунке 2.

Рисунок 2 — Участок цепи содержащий ЭДС

Закон Ома для полной цепи

Закон формулируется следующим образом [1, стр.34][2, стр.17]:

  • I — ток в электрической цепи;
  • E — ЭДС электрической цепи;
  • R — сопротивление электрической цепи;
  • r — внутреннее сопротивление источника ЭДС.

Формулировка выражения (5) через проводимость неудобна и здесь приведена не будет. Ниже на рисунке 3 изображена схема электрической цепи для которой справедливо выражение (5).

Рисунок 3 — Полная цепь

На схеме видно, что R и r соединены последовательно, а в формуле это отражено как сумма R (сопротивления цепи) и r (внутреннего сопротивления источника ЭДС). Заменим выражение R + r на Rп

  • Rп — полное сопротивление электрической цепи (включая сопротивление источника ЭДС).

Закон Ома в дифференциальной форме

Закон Ома в дифференциальной форме, представленный в выражении (7), справедлив для неоднородного, но изотропного вещества [3].

  • \(\vec\jmath\) — плотность тока;
  • ρ — удельное сопротивление;
  • \(\vec E\) — напряжённость электрического поля.

Примеры применения

Ниже приведены несколько примеров для демонстрации применения разных формулировок закона Ома.

Пример 1

Схема задания приведена на рисунке 4. На схеме R = 5,2 Ом, U = 26 В. Определить I.

Рисунок 4 — Схема к 1 и 2-му примеру

Для решения задания воспользуемся выражением (1):

Пример 2

Схема задания приведена на рисунке 4. К данному участку цепи приложено напряжение 24 В и по нему протекает ток 1,5 А. Определить проводимость участка цепи.

Для решения задания преобразуем выражение (2) относительно G:

Пример 3

Схема задания приведена на рисунке 5. На схеме U = 220 В, I = 0,5 А, R = 140 Ом. Определить E.

Рисунок 5 — Схема к 3-му примеру

Для решения задания преобразуем выражение (3) относительно E:

Подставим в выражение (10) известные величины:

Пример 4

Сопротивление электрической цепи, приведенной на рисунке 3 составляет 12 Ом, напряжение источника ЭДС включенного в цепь — 9 В. Измерения показали, что по цепи протекает ток 0,72 А. Необходимо определить внутреннее сопротивление источника ЭДС.

Преобразуем выражение (5) относительно r:

Определим внутренней сопротивление источника ЭДС, подставив в выражение (10) известные величины:

Использованные термины

Электрический потенциал точки:

Потенциал обозначается буквой φ греческого алфавита и измеряется в вольтах (В). Он не имеет направления и записывается как скаляр.

Электрическое напряжение:

Напряжение обозначается буквой U (u) латинского алфавита и измеряется в вольтах (В). Напряжение — скалярная величина, но на электрических схемах указывают его положительное направление.

Электродвижущая сила (ЭДС):

ЭДС обозначается буквой E (e) латинского алфавита и измеряется в вольтах (В). ЭДС — скалярная величина, но на электрических схемах указывают её положительное направление. Она численно равна напряжению на зажимах не подключенного источника.

Электрическое ток:

Напряжение обозначается буквой I (i) латинского алфавита и измеряется в амперах (А). Ток, так же как и напряжение, величина скалярная, и на электрических схемах тоже указывают его положительное направление [2, стр.11] .

Плотность тока:

Плотность тока обозначается буквой \(\vec\jmath\) латинского алфавита и измеряется в амперах на метр квадратный (А/м 2 ). Плотность тока — векторная величина [4].

Электрическое сопротивление:

Сопротивление обозначается буквами R (r), X (x) или Z (z) латинского алфавита (последние два обозначения применяются для реактивного и комплексного сопротивления соответственно) и измеряется в омах (Ом). Как и предыдущие, сопротивление — скалярная величина.

Электрическая проводимость:

Проводимость обозначается буквами G (g) латинского алфавита и измеряется в сименсах (См). Так же как и сопротивление проводимость — скалярная величина.

Удельное сопротивление:

Удельная проводимость обозначается буквами ρ греческого алфавита и измеряется в омах на метр (Ом×м). Является скалярной величиной. [3].

В дальнейшем при использовании вышеперечисленных терминов слово «электрический» будет упускаться.

Источник