Меню

Закон ома для цепи синусоидального тока это

Часть III. Цепи синусоидального тока

Тема 3. Цепи синусоидального тока

  1. Общие сведения и определения
  2. Комплексная амплитуда
  3. Действующие значения синусоидальной функции
  4. Изображение синусоидальных функций векторами. Векторная диаграмма
  5. Изображение синусоидальной функции комплексными числами
  6. Закон Ома в комплексной форме
  7. Уравнения элементов в комплексной форме
  • § 3.1. Общие сведения и определения:

Переменный ток имеет большее распространение, чем постоянный.

  • конструкция электродвигателей и генераторов переменного тока гораздо проще;
  • генераторы переменного тока могут быть выполнены для более высокого напряжения;
  • переменный ток легко преобразовывается с помощью трансформатора, что необходимо при распределении электроэнергии и т.д.

Переменный ток – ток, периодически меняющий свое значение и направление. Наибольшее значение переменного тока – его амплитуда.

Переменный ток характеризуется:

  • амплитудой;
  • периодом;
  • частотой;
  • фазой.

Амплитуда – наибольшие (положительные или отрицательные) величины.

Период – время, в течение которого происходит полное колебание тока в проводнике.

Частота – обратно периоду.

Фаза – характеризует состояние переменного тока в любой момент времени.

Основным видом переменного тока является синусоидальный (гармонический) ток. Закон изменения такого тока описывается синусоидальной функцией.

В линейных электрических цепях, в которых действуют синусоидальные источники, все электрические параметры изменяются по синусоидальному закону.

e(t), u(t), i(t) – мгновенные значения;

ω = 2π – угловая частота, [рад/с];

ƒ = 1 Т – циклическая частота, [Гц];

Любую синусоидальную функцию можно изобразить в виде графика, который называется графиком временных значений или временной диаграммой.

120

  • § 3.2. Комплексная амплитуда:

Расчет цепей синусоидального тока с использованием мгновенных значений требует громоздкой вычислительной работы и применим для простейших электрических цепей.

Для расчета цепей синусоидального тока синусоидальную функцию заменяют эквивалентной величиной.

где j = √ — 1 – мнимая единица.

– сопряженная комплексная амплитуда.

Последняя запись означает, что синусоидальное напряжение можно представить на комплексной плоскости в виде двух векторов, длина которых равна Um и которые равномерно вращаются со скоростями, равными ω в противоположные стороны.

  • § 3.3. Действующие значения синусоидальной функции:

Действующее значение синусоидальной функции – ее количественная оценка.

Действующие значения – среднеквадратичные за период значения синусоидальной функции, то есть, если:

то действующее значение:

Аналогично и для тока I и ЭДС ε .

Часто используются выражения, связывающие между собой амплитуду и действующее значение:

Действующее значение – это постоянная величина, которую обычно обозначают той же буквой, что и амплитуду, только без индекса m.

Действующее значение тока оказывает такое же тепловое действие на проводник с сопротивлением R , что и переменный ток, в течение времени, равном периоду. Поэтому большинство электроизмерительных приборов фиксируют и реагируют на действующие значения.

  • § 3.4. Изображение синусоидальных функций векторами. Векторная диаграмма:

где a – проекция вектора на ось y в момент времени t.

133

рис. а рис. б

Любому равномерно вращающемуся радиус-вектору соответствует некоторая синусоидальная функция, и наоборот.

Посмотрим, как условный графический образ синусоидальной функции – радиус-вектор – может быть применим при расчетах цепей переменного тока. Определим ток:

Как известно, сумма двух синусоид одинаковой частоты ω представляет собой также синусоиду частотой ω , то есть i = Imsin (ωt + ψ ) и, следовательно, задача сводится к нахождению амплитуды Im и начальной фазы Ψ суммарного тока i. Искомые параметры Im и Ψ можно найти, воспользовавшись известными тригонометрическими преобразованиями.

Проведем решение задачи с помощью радиус-векторов I1m и I2m , вращающихся с частотой ω, положение которых для момента времени t = 0 показаны на рисунке ниже и осуществим геометрическое суммирование этих радиус-векторов по правилу параллелограмма. Результирующий радиус-вектор Im будет вращаться с частотой ω и является изображением некоторой синусоидальной функцией времени.

Следовательно, i = i1 + i2 – геометрическое изображение искомого тока.

138

Измерив дугу суммарного радиус-вектора и, зная выбранный масштаб, можно определить амплитуду Im тока. Непосредственно по чертежу определяется и начальная фаза Ψ.

Рассмотренная совокупность радиус-векторов, изображающих синусоидальные функции времени, называется векторной диаграммой.

  • § 3.5. Изображение синусоидальной функции комплексными числами:

140Для введения комплексного изображения перенесем радиус-вектор, изображающий синусоидальную функцию времени в декартовой плоскости на плоскость комплексных чисел. Для чего совместим ось x с осью действительных чисел Re, а ось y – с Im.

Любому вектору A, расположенному на комплексной плоскости, однозначно соответствует комплексное число, которое может быть записано в трех формах:

  • алгебраической:
  • тригонометрической:
  • показательной: ( e – основание натурального логарифма).
Читайте также:  Как включается амперметр в цепь постоянного тока

Все три формы записи в соответствии с формулой Эйлера равнозначны:

Переход от одной формы записи к другой:

где a1 – действительная часть;

Запишем в трех формах выражение для единичных действительных и мнимых комплексных чисел ( A = 1 ):

где C = AB .

Отношение комплексной амплитуды напряжения к комплексной амплитуде тока называется комплексным сопротивлением:

Модуль комплексного сопротивления, называемый полным сопротивлением, равен отношению амплитуды напряжения к амплитуде тока, а аргумент Ψ комплексного сопротивления – разности начальных фаз напряжения и тока:

Закон Ома в комплексной форме соответственно для амплитудных и действительных значений:

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Закон Ома для цепи синусоидального тока

Множитель в уравнении (3.7) представляет собой комплекс, имеет размерность сопротивления [Ом] и обозначается :

Уравнение (3.7) можно записать в виде

Разделим обе части уравнения (3.9) на и перейдём к комплексам действующих значений .

Закон Ома для цепи синусоидального тока в комплексной форме имеет вид: ,

– полное комплексное сопротивление цепи [Ом];

R — активное сопротивление [Ом],

Х — реактивное сопротивление [Ом].

Для мгновенных значений законы Ома и Кирхгофа справедливы в алгебраической форме. Для максимальных и действующихзначений эти законы справедливы только в векторном виде или в комплексной форме.

Простые электрические цепи

Активное сопротивление в цепях переменного тока

Пусть через резистор R (рис.3.7) протекает ток . По закону Ома: . Обозначим и окончательно получим . Сравним выражения для тока и напряжения. Напряжение изменяется по синусоидальному закону и совпадает по фазе с токомрис.3.8(а). На рис.3.8 (б) представлена совмещенная векторная диаграмма токов и напряжений.

Мгновенная мощность – это произведение мгновенного значения напряжения на участке цепи на мгновенное значение тока i, протекающего по этому участку.

Мощность на активном сопротивлении Rостается весь период положительной. Это означает, что электрическая мощность, поступающая из сети на резистивный элемент полностью преобразуется в нем тепловую энергию, и нагревая его, рассеивается в окружающее пространство.

Индуктивное сопротивление в цепи переменного тока

Пусть через индуктивный элемент L (рис.3.9) протекает ток. , в результате в катушке L наводится ЭДС самоиндукции

Найдём разность потенциалов между точками a и b (рис.3.9). Идём в направлении от точки b к точке а:

Напряжение совпадает с напряжением u .

Из сравнения выражений для тока i и напряжения u видно, что напряжение опережает ток на 90 0 и изменяется по синусоидальному закону (рис.3.10 (а)). На рис.3.10(б) представлена векторная диаграмма тока и напряжения для этого случая. Отметим что

Мкостный элемент в цепи переменного тока

Приложим к конденсатору (рис.3.11) напряжение в результате конденсатор будет периодически перезаряжаться, следовательно, через него будет протекать ток.

отсюда видно, что ток изменяется по синусоидальному закону и опережает напряжение на 90 0 (рис.3.12(а)). На рисунке3.12 (б) представлена векторная диаграмма тока и напряжения. Обозначим — ёмкостное сопротивление.

Источник

Закон Ома в комплексной форме

В процессе расчетов электрических цепей переменного синусоидального тока часто бывает полезен Закон Ома в комплексной форме. Под электрической цепью здесь понимается линейная цепь в установившемся режиме работы, то есть такая цепь, в которой переходные процессы завершились и токи установились.

Падения напряжений, ЭДС источников и токи в ветвях такой цепи являются попросту тригонометрическими функциями времени. Ежели даже в установившемся режиме форма тока в цепи не является синусоидой (меандр, пила, импульсные помехи), то и Закон Ома в комплексной форме будет уже не применим.

Так или иначе, всюду в промышленности сегодня применяется система трехфазного переменного синусоидального тока. Напряжение в таких сетях имеет строго определенные частоту и действующее значение. Действующее значение «220 вольт» или «380 вольт» можно встретить в маркировках на разнообразном оборудовании, в технической документации на него. Именно по этой причине, по причине столь явной унификации, Закон Ома в комплексной форме и удобен во многих расчетах электрических цепей (где он применяется совместно с Правилами Кирхгофа).

Читайте также:  Измерительные датчики постоянного тока

Закон Ома в комплексной форме

Обычная форма записи Закона Ома отличается от комплексной формы его записи. В комплексной форме обозначения ЭДС, напряжений, токов, сопротивлений, — записываются как комплексные числа. Это необходимо для того, чтобы удобно учитывать и вести расчеты как с активными, так и с реактивными сопротивлениями, имеющими место в цепях переменного тока.

Не всегда можно просто взять и поделить падение напряжения на ток, иногда важно учесть характер участка цепи, и это вынуждает нас вносить в математику определенные дополнения.

Символьный метод (метод с комплексными числами) позволяет избавиться от надобности решать дифференциальные уравнения в процессе расчета электрической цепи синусоидального тока. Ибо в цепи переменного тока бывает такое, что ток например есть, а падения напряжения на участке цепи нет; или падение напряжения есть, а тока в цепи нет, в то время как цепь, казалось бы, замкнута.

В цепях постоянного тока такое просто невозможно. Вот почему для переменного тока и Закон Ома отличается. Разве что для чисто активной нагрузки в однофазной цепи он может применяться почти без отличий от расчетов с током постоянным.

Полное сопротивление

Комплексное число состоит из мнимой Im и вещественной Re части, при этом его можно представить вектором в полярных координатах. Для вектора будет характерен некий модуль и угол, на который он повернут вокруг начала координат относительно оси абсцисс. Модуль есть амплитуда, а угол — начальная фаза.

Запись данного вектора можно произвести в тригонометрической, показательной или алгебраической формах. Это и будет символьное изображение реальных физических явлений, ибо в реальности мнимых и вещественных характеристик в цепях на самом деле нет. Это лишь удобный метод решения электротехнических задач с цепями.

Комплексные числа можно делить, умножать, складывать, возводить в степень. Эти операции необходимо уметь выполнять чтобы мочь применять Закон Ома в комплексной форме.

Сопротивления в цепях переменного тока подразделяют на: активное, реактивное и полное. Кроме того следует отличать проводимость. Электроемкость и индуктивность обладают реактивными сопротивлениями переменному току. Реактивные сопротивления относятся к мнимой части, а активное сопротивление и проводимость — к части вещественной, то есть к вполне реальной.

Запись сопротивлений в символической форме несет за собой определенный физический смысл. На активном сопротивлении электроэнергия реально рассеивается в форме тепла по Закону Джоуля-Ленца, в то время как на емкости и индуктивности она преобразуется в энергию электрического и магнитного полей. И возможны преобразования энергии из одной из этих форм — в другую: из энергии магнитного поля — в тепловую или из энергии электрического поля частично в магнитную, а частично — в тепловую и т. д.

Запись сопротивлений в символической форме

Традиционно токи, падения напряжений и ЭДС записывают в тригонометрическом виде, где учитываются как амплитуда, так и фаза, что вполне явно отражает физический смысл явления. Однако угловая частота у напряжений и токов может отличаться, поэтому практически более удобна алгебраическая форма записи.

Наличие угла между током и напряжением приводит к тому, что во время колебаний существуют такие моменты, когда ток (или падение напряжения) равен нулю, а падение напряжения (или ток) не равно нулю. Когда напряжение и ток находятся в одной фазе, то угол между ними кратен 180°, и тогда если падение напряжения равно нулю, то и ток в цепи равен нулю. Речь о мгновенных значениях.

Закон Ома в комплексной форме

Итак, понимая алгебраическую запись, можно записать теперь Закон Ома в комплексной форме. Вместо просо активного сопротивления (свойственного цепям постоянного тока) здесь будет записываться полное (комплексное) сопротивление Z, а действующие значения ЭДС, токов и напряжений — станут комплексными величинами.

Читайте также:  Трансформатор тока тшл 0 66 iii

Во время расчета электрической цепи с применением комплексных чисел, важно помнить, что данный метод применим только к цепям синусоидального тока и именно в установившемся режиме работы.

Источник



Сопротивление, проводимость и закон Ома

ads

Электрическое сопротивление физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.

Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.

В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости

Формула закона Ома для участка цепи

где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².

Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.

Рис. 1. Удельное сопротивление проводника, ρ

Рис. 1. Удельное сопротивление проводника, ρ

Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).

Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников

Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников

Закон Ома

В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.

Существует несколько интерпретаций закона Ома.

Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R

Рис. 3. Закон Ома для участка цепиРис. 3. Закон Ома для участка цепи

Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А

На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).

Рис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогииРис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии

Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.

Проводимость

Величина обратная сопротивлению, называется проводимостью:

Единица проводимости называется сименс (См): G, (g) = 1/Ом = См.

Источник