Меню

За счет чего металлы проводят электрический ток

Электрический ток в металлах

Свободные электроны в металлах

Вещества, относящиеся к металлам, могут находиться как в твердом, так и в жидком состоянии (ртуть, галлий, цезий и др.). При этом все они являются проводниками электрического тока. Твердые вещества имеют структуру жесткой кристаллической решетки, в узлах которых “сидят” положительно заряженные ионы, совершающие небольшие колебания относительно точки равновесия. В объеме кристалла всегда присутствует большое количество свободных электронов, которые вырвались с орбит атомов в результате механических соударений или воздействия излучений.

Механизм электрического тока в металлах

Рис. 1. Механизм электрического тока в металлах.

Это электронное “облако” движется беспорядочно, хаотично до тех пор, пока к металлу не будет приложено электрическое поле. Электрическое поле E, созданное внешним источником (батареей, аккумулятором), действует на заряд q с силой F:

Под действием этой силы электроны приобретают ускорение в одном направлении и, таким образом, появляется электрический ток в цепи.

Многочисленные наблюдения показали, что при прохождении электрического тока масса проводников и их химический состав не изменяются. Отсюда следует вывод, что ионы металлов, которые составляют основную массу вещества, не принимают участия в переносе электрического заряда.

Опыт Мандельштама и Папалекси

Электронную природу тока в металле первыми экспериментально доказали российские физики Мандельштам и Папалекси в 1913 г. Для того, чтобы выяснить, какие частицы создают электрический ток в металлах, они — без подключения внешнего источника — регистрировали ток в катушке из металлического провода, которую сначала сильно раскручивали вокруг собственной оси, а затем резко останавливали. Поскольку у электрона есть масса, то он должен подчиняться закону инерции. Поэтому в момент остановки атомы решетки останутся на месте, а свободные электроны по инерции, какое-то время, продолжат движение в прежнем направлении. То есть в цепи должен появиться электрический ток. Эксперименты подтвердил это предположение — после остановки катушки исследователи регистрировали бросок тока в цепи.

Опыт Мандельштама и Папалекси

Рис. 2. Опыт Мандельштама и Папалекси.

Этот эксперимент в 1916 г. повторили американцы Стюарт и Толмен. Им удалось повысить точность измерений и получить отношение заряда электрона eэ к значению массы электрона mэ:

Этот фундаментальный результат совпал с полученными данными из других экспериментов, поставленных на основе измерения других параметров. Впервые эту величину в 1897 г. измерил англичанин Джозеф Томсон по отклонению пучка электронов в зависимости от напряженности электрического поля.

Скорость распространения электрического тока

Скорость распространения электрического поля в металле близка к скорости света в вакууме, которая равна 300000 км/с. Но это не значит, что электроны внутри вещества двигаются с такой же скоростью. Для проводника с площадью поперечного сечения S = 1 мм 2 при силе тока I = 1 A скорость упорядоченного движения электронов равна v = 6*10 -5 м/с. То есть за одну секунду электроны в проводнике за счет упорядоченного движения проходят всего 0,06 мм.

Такие малые значения скоростей движения электронов в проводниках не приводят к запаздыванию включения электрических ламп, включения бытовых приборов и т.д., так как при подаче напряжения вдоль проводов со скоростью света распространяется электрическое поле. Эта скорость настолько велика, что позволяет приводить в движение свободные электроны практически мгновенно во всех проводниках электрической цепи.

Применение свойств электрического тока в металлах

Физические свойства электрического тока используются в различных областях жизнедеятельности:

  • Способность электрического тока нагревать проводники используется для изготовления нагревательных бытовых и промышленных приборов;
  • Вокруг провода с электрическим током возникает магнитное поле, что позволило создать электродвигатели, без которых сегодня невозможно обойтись;
  • Передача электроэнергии на различные расстояния осуществляется по проводам линий электропередачи (ЛЭП), по которым течет электрический ток.

Применение электрического тока

Рис. 3. Применение электрического тока.

Что мы узнали?

Итак, мы узнали, что электрический ток в металлах создается упорядоченным движением свободных электронов. Экспериментальное доказательство того, что электрический ток в металлах создают электроны, впервые получили российские физики Мандельштам и Папалекси. Физические свойства электрического тока в металлах позволили создать большое количество бытовых и промышленных устройств.

Источник

За счет чего металлы проводят электрический ток

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта):

Катушка с большим числом витков тонкой проволоки (рис. 9.1) приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру.Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

Читайте также:  Потребление тока источником питания

При торможении вращающейся катушки на каждый носитель заряда e массой m действует тормозящая сила, которая играет роль сторонней силы, то есть силы неэлектрического происхождения:

Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила:

За время торможения катушки по цепи протечет заряд q, равный:

где – длина проволоки катушки, I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, – начальная линейная скорость проволоки.

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ.

Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода.

При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории:

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Величина дрейфовой скорости электронов лежит в пределах 0,6 – 6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения.

Малая скорость дрейфа не противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках: закон Ома, закон Джоуля – Ленца и объясняет существование электрического сопротивления металлов.

Электрическое сопротивление проводника:

Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом. Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R (закон Дюлонга и Пти). Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов: теория дает , в то время как из эксперимента получается зависимость ρ

Наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Зонная модель электронной проводимости металлов

Качественное различие между металлами и полупроводниками (диэлектриками) состоит в характере зависимости удельной проводимости от температуры. У металлов с ростом температуры проводимость падает, а у полупроводников и диэлектриков растет. При Т ® 0 К у чистых металлов проводимость s ® ¥. У полупроводников и диэлектриков при Т ® 0 К, s ® 0. Качественного различия между полупроводниками и диэлектриками в отношении электропроводности, нет.

Проявление у одних веществ металлических свойств, а у других полупроводниковых и диэлектрических может быть последовательно объяснено только в рамках квантовой теории.

Читайте также:  Полезная мощность машины постоянного тока

Согласно квантовым представлениям, энергия электронов в атоме может изменяться дискретным образом. Причем, согласно принципу Паули, в одном квантовом состоянии может находиться не более одного электрона. В результате электроны не собираются на каком-то одном энергетическом уровне, а последовательно заполняют разрешенные энергетические уровни в атоме, формируя его электронные оболочки.

При сближении большого числа атомов и образовании кристаллической структуры химические связи между атомами образуются за счет электронов, находящихся во внешних, валентных, электронных оболочках.

Согласно принципу Паули, атомы не могут сбиться в плотную массу, поскольку в этом случае в одном квантовом состоянии оказалось бы много частиц с полуцелым спином — собственным моментом количества движения (L = ħ/2). Такие частицы называются фермионами, и к ним, в частности, относятся электроны, протоны, нейтроны. Названы они так в честь итальянского физика Э. Ферми, впервые описавшего особенности поведения коллективов таких частиц. При сближении большого числа атомов в пределах твердого тела происходит расщепление исходного энергетического уровня валентного электрона в атоме на N подуровней, где N — число атомов, образующих кристалл. В результате образуется зона разрешенных энергетических уровней для электронов в твердом теле (рис.9.2).

В металлах внешние валентные оболочки заполнены не полностью, например, у атомов серебра во внешней оболочке 5s 1 находится один электрон, в то время как, согласно принципу Паули, могло бы находиться два электрона с различными ориентациями спинов, но второго электрона во внешней оболочке атома серебра просто нет. При сближении N атомов Ag и расщеплении внешнего энергетического уровня 5s 1 1 на N подуровней каждый из них заполняется уже двумя электронами с различными ориентациями спинов. В результате при сближении N атомов серебра возникает энергетическая зона, наполовину заполненная электронами. Энергия, соответствующая последнему заполненному электронному уровню при 0 К, называется энергией Ферми eFkTg. Расстояние между соседними энергетическими уровнями DЕ очень мало, поскольку N очень велико, до .

1¸10 эВ, ΔЕ = eF/N 4 К – температура вырождения.

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Какие металлы лучше всего проводят электричество

Какие материалы проводят электрический ток

Проводники электрического тока представляют собой металлические материалы с подвижными электрически заряженными частицами, называемыми «электронами». Когда электрический заряд подается на металл в определенных точках, электроны будут двигаться и пропускать электричество. Материалы с высокой подвижностью электронов являются хорошими проводниками, а материалы с низкой подвижностью электронов не являются проводниками и называются «изоляторами».

Какие металлы лучше всего проводят электричество

Но какие же материалы являются наиболее качественными проводниками? Безусловно, это металлы, а какие именно, расскажем ниже.

Медь и серебро

Медь

Серебро – лучший проводник электричества, поскольку он содержит большее количество подвижных атомов (свободных электронов). Для того чтобы материал был хорошим проводником, электричество, прошедшее через него, должно перемещать электроны; чем больше свободных электронов в металле, тем больше его проводимость. Однако серебро дороже других материалов и обычно не используется, если оно не требуется для специализированного оборудования, такого как спутники или монтажные платы. Медь менее проводящая, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовых приборах. Большинство проводов и проволок содержат медь, а сердечники электромагнитов обычно обмотаны медным проводом. Медь также легко припаивается и формируется в провода, поэтому ее обычно используют, когда требуется большое количество проводящего материала.

Алюминий

Алюминий

Алюминий при сравнении по удельному весу на самом деле более проводящий, чем медь, и стоит дешевле. Алюминиевый материал используется в бытовых изделиях или в проводке, но это не всегда так, поскольку он имеет несколько структурных недостатков. Например, алюминий имеет тенденцию образовывать электрически стойкую поверхность оксида в электрических соединениях, что может привести к перегреву соединения. Все же алюминий используется алюминий для высоковольтных линий электропередач (например, телефонных кабелей), которые могут быть обрамлены в сталь для дополнительной защиты.

Золото

Золото

Золото является хорошим электрическим проводником, и оно не окисляется, как другие металлы при воздействии воздуха. Например, сталь или медь могут окисляться (корродировать) при длительном воздействии кислорода. Золото является одним из самых дорогих металлов и используется только для определенных материалов, таких как компоненты печатных плат или небольшие электрические разъемы. Некоторые материалы могут иметь золотое покрытие в качестве проводника.

Читайте также:  Ns1600n трехполюсный 400в номинальный ток 1600а для установки в щит schneider electric

Сталь и латунь

Сталь

Сталь представляет собой сплав железа, который также является проводником, и является негибким металлом, который сильно корродирует при воздействии воздуха. Его трудно отливать, поэтому сталь редко используется в небольших устройствах или механизмах; вместо этого сталь применяется для герметизации других проводников или для создания большой конструкции. Латунь, которая также является сплавом, представляет собой растягивающийся металл, который позволяет легко изгибать созданные структуры. Он менее коррозионный, чем сталь, он проводящий, но не очень эффективный проводник, и он дешевле.

Источник



III. Основы электродинамики

Тестирование онлайн

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах — очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии — испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод, холодный электрод, собирающий термоэлектроны — анод.

Источник