Меню

Водород при малых токах

Как предотвратить взрыв водорода в тяговом аккумуляторе

У взрыва аккумуляторов обидные причины — спешка, неаккуратность водителей, ошибки в обслуживании. При этом у свинцово-кислотных батарей есть одна особенность, которая повышает риск взрыва — это выделение водорода при зарядке. О тонкостях работы с такими аккумуляторами рассказывает Александр Логинов, генеральный директор компании «Энергоэлемент», которая продает и обслуживает все типы тяговых аккумуляторов.

Водород настолько взрывоопасен, что при концентрации в воздухе более 4% способен сдетонировать без внешнего воздействия, сам по себе. Столько водорода накопится за 2 часа, если мы возьмем пять самых ходовых батарей 48 В 500 А·ч и поставим заряжаться без вентиляции в типовой зарядной комнате. Но на деле такой концентрации не потребуется: достаточно тонкой струйки газа и искры — и аккумулятор рванет.

Почему образуется водород

Выделение водорода в свинцово-кислотных аккумуляторах — естественный процесс. Однако при ошибках в обслуживании этот газ образуется сверх меры. Чтобы разобраться, что это за ошибки, рассмотрим сначала, откуда вообще берется водород в батарее.

Зарядка аккумулятора проходит в три фазы. Первая — основной заряд, вторая — дозаряд и третья — перемешивающий или уравнительный заряд.

В первой фазе батарея принимает ток высокой мощности, а напряжение постепенно растет. Вся энергия поступает в пластины электродов и идет на восстановление свинца.

Вторая фаза начинается, когда напряжение достигло нужного уровня. Далее оно остается постоянным, а ток падает, пока батарея не зарядится до 100%. Сколько бы тока мы ни вливали после этого, пластины уже не смогут его принять.

Излишек тока будет уходить в воду и запустит ее электролиз — вода начнет разлагаться на молекулы кислорода и водорода. Аккумулятор «закипит» и будет выделять огромное количество энергии. Это и есть третья фаза.

Считается, что такого кипения нужно избегать. На деле не совсем так. Непродолжительное кипение аккумулятора необходимо: пузырьки газа поднимаются вверх и перемешивают разные по плотности слои электролита, чтобы выровнять. А вот затягивать кипение нежелательно.

Инженер забыл поднять в тягаче сидушку во время заряда. Водород скопился под герметичной крышкой и рванул, когда водитель включил зажигание

Что усиливает выделение водорода

Зарядка трансформаторными устройствами с профилем WoWa. У зарядных устройств есть коэффициент перезаряда — он показывает, какой излишек энергии идет на третью фазу. Современные высокочастотные устройства подают разный ток в зависимости от фазы, а их коэффициент перезаряда равен 1,03—1,07. В отличие от них трансформаторные зарядные устройства WoWa подают ток постоянной мощности. Коэффициент перезаряда таких устройств составляет 1,2, то есть третья фаза начинается раньше, а водорода выделяется больше.

Зарядка горячей батареи также приводит к раннему началу третьей фазы. Чем выше температура, тем ниже напряжение, при котором начинается электролиз воды. Фактически из-за этого в не успевшей остыть батарее третья фаза начнется одновременно с первой. Батарея критически нагревается — до 90 градусов, это ведет к коррозии электродов и перерасходу воды. Если после заряда открыть крышку для долива воды, капли горячего электролита полетят наружу.

Зарядка аккумулятора без одного из элементов. Зарядное устройство подает ток высокой мощности, пока не получит нужное напряжение. Так как прибор заряжает не отдельные аккумуляторные элементы, а батарею в целом, нужное напряжение равно сумме напряжения всех элементов. Это число записано в профиле зарядного устройства, и прибор не может сделать перерасчет, если какого-то элемента нет. В итоге оставшиеся элементы получают перенапряжение, а избыток энергии идет в электролиз воды.

Работа на старых аккумуляторах более одного разряда в день. На новом аккумуляторе литр воды испаряется за пять-семь циклов работы, а на старых — за один-два. Чем ниже уровень электролита, тем больше внутри элемента пространства для скапливания водорода. Это особенно опасно для техники с высокими аккумуляторами, например, узкопроходных высотных штабелеров.

Как происходит взрыв

В крышках для долива воды в аккумулятор есть отверстия диаметром 2 мм — через них водород выходит их элемента. Это удобнее, чем каждый раз открывать крышку с риском выплеснуть кислоту на корпус.

После зарядки водород еще какое-то время выходит наружу и скапливается в пазухах крышек. Если не дождаться полного выветривания, газ может взорваться. К взрыву приводят искры, сильный нагрев, открытое пламя, а также короткое замыкание — из-за коррозии перемычек, оголенных проводов, трещин в пластиковой обшивке.

Чаще всего изоляция разрушается, когда водители торопятся приступить к погрузке и забывают об аккуратном обращении. Например, тянут силовой кабель не за коннектор, а за провод, из-за чего место соединения оголяется. В спешке забывают поправить провода и придавливают их батареей или сидушкой — пара таких ударов и изоляция лопается.

Если тянуть силовой кабель не за коннектор, изоляция на проводах отходит. Незащищенные «+» и «−» оказываются на расстоянии двух сантиметров, замыкание между ними — вопрос времени

Мы занимаемся обслуживанием аккумуляторов и не раз сталкивались с последствиями взрыва водорода. Вот некоторые случаи из нашей практики.

Пример 1. У узкопроходных высотных штабелеров и погрузчиков с грузоподъемностью от двух тонн через аккумулятор идет ток мощностью 1000 А·ч. Опасность в том, что он может раскалить всю проводку батареи. К тому же у такой техники высокие аккумуляторы и места для скопления водорода много.

В этом примере у штабелера из-за коррозии перегревалась одна из перемычек батареи. Водитель не выждал паузу и начал работу, когда концентрация водорода под крышкой была максимальной. Перемычка перегрелась и водород сдетонировал. Взорвался один элемент. На поставку нового из Европы ушло четыре недели — все это время батарея простаивала.

Пример 2. К замыканию привело использование неизолированной траверсы для подъема аккумулятора. Когда изоляция изнашивается со временем, возрастает риск попасть деталями траверсы на оголенные элементы «+» и «−» батареи, например, в этом случае — на поврежденные болты.

Неизолированная траверса может вызвать искру или привести к замыканию

Пример 3. Когда водители ставят аккумулятор в технику, то в спешке забывают о мерах безопасности. Складская техника массивная, а места для батареи впритык — можно пережать провода.

При установке аккумулятора в электропогрузчик водитель не рассчитал высоту подъема и угол наклона тележки. Провода прижало к корпусу и взорвалось 12 элементов. Куски пластика с кислотой разлетелись вокруг и только случайно не попали в водителя.

Пример 4. Водитель ричтрака не поправил силовой кабель, когда задвигал аккумулятор. Провода попали между ним и бортом ричтрака, и их срезало. Произошло короткое замыкание и 6 элементов взорвались. Ситуацию усугубило то, что батарею почти не обслуживали, уровень электролита был низкий, а места для водорода много.

Попавшие между батареей и техникой провода срезало. Взрыв был такой силы, что повредил стенку аккумулятора

Пример 5. Во время заряда аккумулятор находился в тягаче и был закрыт сидушкой с герметичной крышкой — инженер забыл ее поднять. Водород накапливался под крышкой, да еще сверх меры, потому что батарею заряжали без одного элемент. Взрыв произошел прямо под водителем, когда он включил зажигание. Парень получил контузию, из ушей пошла кровь. К работе он смог вернуться только через две недели. А аккумулятор стоимостью 11 тысяч евро вышел из строя.

Иногда к взрыву приводит халатность механиков, например, когда начинают чистить клеммы, не отключив батарею от зарядного устройства. Такая забывчивость — все равно что уехать с заправки, не вынув пистолет из бака.

При работе со свинцово-кислотными батареями важно соблюдать требования ГОСТа по утилизации водорода из зарядной комнаты. Как правило, к недостаточной вентиляции приводит плохая вытяжка или одновременная зарядка слишком многих аккумуляторов. Однако вместо того, чтобы устранить нарушения, компании порой предпочитают откупиться от пожарного надзора.

Мы рекомендуем установить в зарядной комнате датчик водорода, следить за состоянием изоляции всех элементов батареи и делать паузу в 15 минут после заряда. Надеемся, наш опыт поможет компаниям предотвратить чрезвычайные ситуации.

Источник

Отопление водородом перспектива ли

Способы получения водорода в промышленных условиях

Добыча путем конверсии метана
. Вода в парообразном состоянии, предварительно нагретая до 1000 градусов по Цельсию, смешивается с метаном под давлением и в присутствии катализатора. Способ этот интересный и проверенный, также надо отметить, что он постоянно совершенствуется: ведется поиск новых катализаторов, более дешевых и эффективных.

Рассмотрим самый древний метод получения водорода — газификацию угля
. При условии отсутствия доступа воздуха и температуре в 1300 градусов Цельсия, нагревают уголь и водяной пар. Таким образом, происходит вытеснение водорода из воды, и получается углекислый газ (водород будет наверху, углекислый газ, также получаемый в результате проводимой реакции, – внизу). Таким будет разделение газовой смеси, все очень просто.

Получение водорода путем электролиза воды
считается самым простым вариантом. Для его осуществления необходимо залить в емкость раствор соды, поместить также туда два электрических элемента. Один будет заряжен положительно (анод), а второй – отрицательно (катод). При подаче тока водород отправится на катод, а кислород — на анод.

Получение водорода по методике частичного окисления
. Для этого используется сплав алюминия и галлия. Его помещают в воду, что приводит к образованию водорода и оксида алюминия в процессе реакции. Галлий необходим для того, чтобы реакция произошла в полном объеме (этот элемент не позволит алюминию окислиться преждевременно).

В последнее время приобрела актуальность методика использования биотехнологий
: при условии недостатка кислорода и серы, хламидомонады начинают интенсивно выделять водород. Очень интересный эффект, который сейчас активно изучается.

Читайте также:  Хэппи мон тока бока

Отопление водородом перспектива ли

Не стоит забывать и еще один старый, проверенный метод добычи водорода, который заключается в использовании разных щелочных элементов
и воды. В принципе, эта методика осуществима в лабораторных условиях при наличии необходимых мер безопасности. Таким образом, в ходе реакции (она протекает при нагревании и с катализаторами) образуется оксид металла и водород. Остается только его собрать.

Получить водород путем взаимодействия воды и угарного газа
можно только в промышленных условиях. Образуется углекислый газ и водород, принцип их разделения описан выше.

Отопление водородом перспектива ли

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.

Небольшой расход воды при получении электроэнергии и тепла.

Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.

Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.

Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.

В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.

Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в
промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды
, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550 o C
, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Общая схема электролизера выглядит так.

Отопление водородом перспектива ли

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.Отопление водородом перспектива ли

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.Отопление водородом перспектива ли

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.Отопление водородом перспектива ли

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.Отопление водородом перспектива ли

Все тщательно промазывается герметиком.Отопление водородом перспектива ли

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.Отопление водородом перспектива ли

Их необходимо соединить вместе и оплавить шов.Отопление водородом перспектива ли

Гайки делаются из бутылочных крышек.Отопление водородом перспектива ли

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.Отопление водородом перспектива ли

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.Отопление водородом перспектива ли

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.Отопление водородом перспектива ли

Под диодный мост необходимо подложить несколько слоев картона.Отопление водородом перспектива ли

В крышке распаячной коробки делаются необходимые отверстия.Отопление водородом перспектива ли

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.Отопление водородом перспектива ли

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.Отопление водородом перспектива ли

Актуальность этого вопроса на сегодняшний день достаточно высока по причине того, что сфера использования водорода чрезвычайно обширна, а в чистом виде он практически нигде в природе не встречается. Именно поэтому было разработано несколько методик, позволяющих осуществлять добычу этого газа из других соединений посредством химических и физических реакций. Об этом и рассказывается в приведенной статье.

Добыча водорода в условиях домашнего хозяйства

Выбор электролизера

Для получения элемента дома необходим специальный аппарат – электролизер. Вариантов такого оборудования на рынке много, аппараты предлагают как известные технологические корпорации, так и мелкие производители. Брендовые агрегаты дороже, но качество их сборки выше.

Домашний прибор отличается малыми габаритами и легкостью в эксплуатации. Основными деталями его являются:

Отопление водородом перспектива лиЭлектролизер — что это

  • риформер;
  • система очистки;
  • топливные элементы;
  • компрессорное оборудование;
  • емкость для хранения водорода.

В качестве сырья берется простая вода из-под крана, а электричество идет из обычной розетки. Сэкономить на электроэнергии позволяют агрегаты на солнечных батареях.

«Домашний» водород применяют в системах отопления или приготовления пищи. А также им обогащают бензовоздушную смесь, чтобы повысить мощность двигателей автомобиля.

Изготовление аппарата своими руками

Еще дешевле сделать прибор самому в домашних условиях. Сухой электролизер выглядит как герметичный контейнер, который представляет собой две электродные пластины в емкости с электролитическим раствором. Во Всемирной сети предлагаются разнообразные схемы сборки аппаратов разных моделей:

  • с двумя фильтрами;
  • с верхним либо нижним расположением контейнера;
  • с двумя или тремя клапанами;
  • с оцинкованной платой;
  • на электродах.

Отопление водородом перспектива лиСхема устройства электролиза

Простой прибор для получения водорода создать несложно. Для него потребуются:

  • листовая нержавеющая сталь;
  • прозрачная трубка;
  • штуцеры;
  • пластиковая емкость (1,5 л);
  • водяной фильтр и обратный клапан.

Отопление водородом перспектива лиУстройство простого прибора для получения водорода

Помимо этого, нужны будут различные метизы: гайки, шайбы, болты. Первым делом нужно распилить лист на 16 квадратных отсеков, у каждого из них спилить угол. В противоположном от него углу требуется высверлить отверстие для болтового крепления пластин. Для обеспечения постоянного тока пластины нужно подключать по схеме: плюс–минус–плюс–минус. Изолируют эти детали друг от друга с помощью трубки, а на соединении болтом и шайбами (по три штуки между пластинками). На плюс и минус насаживают по 8 пластин.

При правильной сборке ребра пластинок не будут задевать электроды. Собранные детали опускают в емкость из пластика. В месте касания стенок болтами делают два установочных отверстия. Устанавливают защитный клапан для удаления избытка газа. В крышку контейнера монтируют штуцеры и герметизируют швы силиконом.

Тестирование аппарата

Чтобы протестировать аппарат, выполняют несколько действий:

Отопление водородом перспектива лиСхема получения водорода

  1. Наполняют жидкостью.
  2. Прикрыв крышкой, соединяют один конец трубки со штуцером.
  3. Второй опускают в воду.
  4. Подключают к источнику питания.

После включения прибора в розетку через несколько секунд будет заметен процесс электролиза и выпадение осадка.

Чистая вода не обладает хорошей электропроводностью. Для улучшения этого показателя нужно создать электролитический раствор, добавив щелочь – гидроксид натрия. Он есть в составах для очищения труб наподобие «Крота».

Способы получения водорода

Водород – газообразный элемент без цвета и запаха с плотностью 1/14 по отношению к воздуху. В свободном состоянии он встречается редко. Обычно водород соединен с другими химическими элементами: кислородом, углеродом.

Получение водорода для промышленных нужд и энергетики проводится несколькими методами. Самыми популярными считаются:

  • электролиз воды;
  • метод концентрирования;
  • низкотемпературная конденсация;
  • адсорбция.

Отопление водородом перспектива лиОтопление водородом перспектива лиОтопление водородом перспектива лиОтопление водородом перспектива ли

Выделить водород можно не только из газовых или водных соединений. Добыча водорода производится при воздействии на дерево и уголь высокими температурами, а также при переработке биоотходов.

Атомный водород для энергетики получают, используя методику термической диссоциации молекулярного вещества на проволоке из платины, вольфрама либо палладия. Ее нагревают в водородной среде под давлением менее 1,33 Па. А также для получения водорода используются радиоактивные элементы.

Отопление водородом перспектива лиТермическая диссоциация

Электролизный метод

Наиболее простым и популярным методом выделения водорода считается электролиз воды. Он допускает получение практически чистого водорода. Другими преимуществами этого способа считаются:

Отопление водородом перспектива лиПринцип действия электролизного генератора водорода

  • доступность сырья;
  • получение элемента под давлением;
  • возможность автоматизации процесса из-за отсутствия движущихся частей.

Процедура расщепления жидкости электролизом обратен горению водорода. Его суть в том, что под воздействием постоянного тока на электродах, опущенных в водный раствор электролита, выделяются кислород и водород.

Дополнительным преимуществом считается получение побочных продуктов, обладающих промышленной ценностью. Так, кислород в большом объеме необходим для катализации технологических процессов в энергетике, очистки почвы и водоемов, утилизации бытовых отходов. Тяжелая вода, получаемая при электролизе, в энергетике используется в атомных реакторах.

Читайте также:  Определение понятия переменный электрический ток

Получение водорода концентрированием

Этот способ основан на выделении элемента из содержащих его газовых смесей. Так, наибольшая часть производимого в промышленных объемах вещества, извлекается с помощью паровой конверсии метана. Добытый в этом процессе, водород используют в энергетике, в нефтеочистительной, ракетостроительной индустрии, а также для производства азотных удобрений. Процесс получения H2 осуществляют разными способами:

  • короткоцикловым;
  • криогенным;
  • мембранным.

Последний способ считается наиболее эффективным и менее затратным.

Отопление водородом перспектива ли

Конденсация под действием низких температур

Эта методика получения H2 заключается в сильном охлаждении газовых соединений под давлением. В результате они трансформируются в двухфазную систему, которая впоследствии разделяется сепаратором на жидкое составляющее и газ. Для охлаждения применяют жидкие среды:

  • воду;
  • сжиженный этан или пропан;
  • жидкий аммиак.

Отопление водородом перспектива ли

Эта процедура не так проста, как кажется. Чисто разделить углеводородные газы за один раз не получится. Часть компонентов уйдет с газом, забираемым из сепарационного отсека, что не экономично. Решить проблему можно глубоким охлаждением сырья перед сепарацией. Но это требует больших энергозатрат.

В современных системах низкотемпературных конденсаторов дополнительно предусмотрены колонны деметанизации либо деэтанизации. Газовую фазу выводят с последней сепарационной ступени, а жидкость направляется в ректификационную колонну с потоком сырого газа после теплообмена.

Способ адсорбции

Во время адсорбции для выделения водорода используют адсорбенты – твердые вещества, поглощающие необходимые компоненты газовой смеси. В качестве адсорбентов применяют активированный уголь, силикатный гель, цеолиты. Для осуществления этого процесса применяют специальные аппараты – циклические адсорберы или молекулярные сита. При реализации под давлением этот метод позволяет извлекать 85-процентный водород.

Если сравнивать адсорбцию с низкотемпературной конденсацией, можно отметить меньшую материальную и эксплуатационную затратность процесса – в среднем, на 30 процентов. Методом адсорбции производят водород для энергетики и с применением растворителей. Такой способ допускает извлечение 90 процентов H2 из газовой смеси и получение конечного продукта с концентрацией водорода до 99,9%.

Источник

Производство водорода в промышленности

Производство водорода

Производство водородаЧто такое производство водорода это процесс получения газа из водород содержащих веществ (вода). Один из самых востребованных это ее электролиз, в результате получается химически чистый водород.

В лабораторных условиях технический водород может быть получен реакцией кислот на металлы или электролизом воды.

Большие количества водорода применяются как сырье для синтеза аммиака и метанола, гидрогенизации жиров, производства бензина из угля, для селективного автоклавного восстановления цветных металлов из аммиачных растворов, восстановления руд и др. Кроме того, водород применяют для создания необходимой атмосферы в печах, для резки и сварки металлов, в качестве охлаждающего реагента в мощных генераторах электрического тока и т. д.

Промышленные способы получения водорода подразделяются на физические, химические и электрохимические.

Электрохимический способ получения водорода основан на электролитическом разложении воды. Этот метод может иметь преимущества перед другими методами там, где по условиям технологии требуется газ высокой чистоты, не содержащий каталитических ядов, либо при наличии дешевой электроэнергии. Малые количества водорода, требуемые постоянно или периодически, целесообразно во всех случаях получать электролизом, как наиболее простым из известных способов.

Впервые процесс электролиза воды наблюдали Труствик и Диманн в 1789 г. Первые конструкции промышленных электролизов с моно- и биполярными электродами, а также работающих при повышенных давлениях, были разработаны в 1888 г. Д. А. Лачиновым.

Электролит для получения водорода

При электролизе чистой воды на катоде выделяется водород, а на аноде — кислород. Однако удельная электропроводность чистой воды столь незначительна, что ее электролиз будет сопро вождаться огромным расходом энергии. Следовательно, для практических целей в воду необходимо ввести электропроводящую до бавку — кислоту, соль или щелочь. По электропроводности кислоты и щелочи имеют преимущество перед солями. Кислоты более электропроводны чем щелочи, а соли обладают меньшей удельной электропроводностью, чем кислоты и щелочи.

В щелочных растворах простые конструкционные материалы железо и обычные стали —оказываются вполне стойкими. Поэтому в промышленности для электролиза воды применяют исключительно щелочные электролиты.

Недостатком щелочных электролитов является снижение их электропроводности со временем, связанное с превращением гидроокиси в карбонат под действием СО2 воздуха.

К материалам для электродов предъявляется еще одно требование — перенапряжение выделения водорода и кислорода на них должно быть по возможности мало. Н аилучший катодный материал — платинированная или гладкая платина. Однако, из-за высокой стоимости платину в качестве электродного материала не применяют. Металлы группы железа, устойчивые в щелочах, обладают и невысоким перенапряжением. Перенапряжение на железе и кобальте на несколько десятков милливольт меньше, чем на никеле.

Катодные процессы получения

В щелочных растворах выделение водорода происходит за счет присоединения электрона к молекуле воды:

Зависимость скорости этой реакции (силы тока I) от перенапряжения (η>0) выражается уравнением:

η = a + ((RT):(αF))lnI

где а — постоянная; R — газовая постоянная; Т — температура, °К; F — постоянная Фарадея; α — коэффициент переноса.

Из уравнения следует, что при прочих равных условиях перенапряжение пропорционально константе а, зависящей от материала электрода. Влияние материала электрода уже было рассмотрено выше. Здесь необходимо отметить следующее. Константа а по физическому смыслу есть перенапряжение при плотности тока, равной единице (1 а/см 2 ). Но плотность тока мы относим к единице видимой поверхности электрода («габаритная» плотность тока), а в формулу входит истинная плотность тока. Следовательно, качество поверхности должно существенно сказываться на величине перенапряжения. Если поверхность имеет развитый рельеф, то каждой единице видимой поверхности будет соответствовать значительно большая истинная поверхность и при той же габаритной плотности тока истинная плотность тока будет в соответствующее число раз меньше.

Существует несколько способов получения высокоразвитой поверхности катодов. Увеличить истинную поверхность можно наждачной обработкой. Такая обработка стального катода снижает перенапряжение выделения водорода при плотности тока 1000 а /м 2 и температуре 60—80° С на 0,2 в.

Вторым способом увеличения истинной поверхности является гальваническое осаждение на электроды металлов в виде губки. Этим удается снизить перенапряжение примерно на 0 ,3 —0,4 в. Впрочем, катоды электролизных ванн спустя некоторое время работы самопроизвольно покрываются слоем губчатого железа, осаждаемого током в. процессе электролиза, так как вследствие коррозии аппаратуры в растворе появляются ионы железа, хотя и в очень малых количествах. Было предложено также гальванически покрывать катоды никелем, причем вести электролиз из раствора с добавкой роданистой соли . При этом в катодном осадке оказывается до 20% серы, которая затем выщелачиваясь в раствор, создает высокоразвитую поверхность электрода. Перенапряжение выделения водорода в результате этого может быть снижено в условиях опытов на 0,3—0,4 в.

Перенапряжение пропорционально логарифму плотности тока, т.с. с ростом плотности тока оно сперва растет быстро, а затем все медленнее и медленнее. Следовательно, рост напряжения на ванне с увеличением плотности тока в области малых плотностей тока будет большим, чем в области больших плотностей тока.

Повышение температуры снижает перенапряжение и увеличивает скорость электродной реакции. В реальных условиях возрастание температуры на 1 град снижает перенапряжение примерно на 2—3 мв.

В щелочном электролите нет катионов, которые могли бы разряжаться на катоде и приводить к появлению других электродных реакций, кроме реакции образования газообразного водорода. Единственной побочной реакцией, которая может протекать на катоде, является реакция электровосстановления растворенного кислорода:

Эта реакция протекает при значительно более положительных потенциалах, чем реакция катодного образования водорода. Однако ее скорость ограничивается малой растворимостью кислорода в щелочных растворах особенно при высоких температурах. На нее обычно тратятся всего лишь доли процента тока. Поэтому естественно, что электролизные ванны всегда работают с очень высокими катодными выходами по току (порядка 97—98% с учетом утечек тока).

Анодный процесс

Процесс выделения кислорода на аноде сопровождается окислением материала анода. Поэтому при длительном электролизе разряд анионов идет не на металле, а на окисленной поверхности электрода. На величину перенапряжения выделения кислорода оказывает влияние природа поверхностных окислов и прочность связи кислород — металл. С течением времени перенапряжение выделения кислорода несколько повышается пока не достигнет через длительный промежуток времени постоянного значения. Поэтому величина анодного потенциала в промышленной, длительно работающей ванне, более положительна, чем та, которую определяют в лабораторных условиях. По данным Я. И. Турьяна, эта разница для промышленных плотностей тока составляет 0,15—0,18 в.

Побочные реакции на аноде отсутствуют.

Электролит электроды диафрагмы

Для выбора оптимальной концентрации щелочи необходимо знать зависимость удельной электропроводности растворов от концентрации при различных температурах. Кривые, выражающие эту зависимость, при всех температурах проходят через максимум. С повышением температуры максимумы сдвигаются в сторону больших концентраций щелочи. При 70° С, что близко к температуре электролита в промышленных ваннах, максимальной электропроводностью обладают 22% раствор NaOH и соответственно 32% раствор КОН. Однако применяют 16—18% растворы NaOH и 25—29% растворы КОН. Этим, не снижая существенно удельную электропроводность раствора, уменьшают расход щелочи на приготовление электролита и восполнение потерь, а также достигают некоторого снижения агрессивности среды, ибо в концентрированных растворах щелочей коррозия хотя и невелика, но все же более заметна. Для еще большего подавления коррозии в электролит обычно добавляют пассиватор —K2Cr2O7 , из расчета

Читайте также:  Может ли азот проводить ток

2 г/л электролита, заливаемого в ванну.

Максимальная электропроводность раствора КОН больше, чем NaOH, но стоимость NaOH меньше. Поэтому как КОН, так и NaOH одинаково могут быть использованы в электролизных ваннах.

Оно оказывается прямо пропорционально силе тока, проходящего через электролит, или плотности тока. Эта величина сильно зависит от материала электрода и высоты электродов.

Величину газонаполнения нельзя рассчитать теоретическим путем. Поэтому приходится определять газонаполнение экспериментально в каждом конкретном случае и затем рассчитывать значение К по формуле. При конструировании электролизеров стремятся создать условия, обеспечивающие величину газонаполнения не выше 15— 20%.

Снижение напряжения на ванне при работе с кобальтированными железными катодами объясняется не только меньшим перенапряжением выделения водорода на кобальте, но и меньшим газонаполнением катодного пространства.

При электролизе щелочных растворов с электродами из металлов группы железа анодное пространство оказывается мало заполненным пузырьками газа. Наоборот, на катоде образуются очень мелкие пузыри, которые пронизывают всю толщу раствора, резко повышая его сопротивление. Это явление не может быть объяснено тем, что на катоде выделяется водорода в 2 раза больше, чем на аноде кислорода. Объясняется это явление тем, что в условиях электролиза с никелевыми или железными электродами потенциал катода более удален от потенциала нулевого заряда поверхности металла электрода, чем потенциал анода. Поэтому смачиваемость катода больше, чем анода и на катоде дипольные молекулы воды более интенсивно выталкивают пузырьки с поверхности .

Методы борьбы с газонаполнением электролита различны. В некоторой степени снижение газонаполнения удается осуществить повышением температуры. Целесообразно, несмотря на высокую стоимость кобальта, железные катоды гальванически покрывать слоем кобальта. Но эти способы не дают радикального решения вопроса. Поэтому снижение газонаполнения в основном проводят по линии создания таких конструкций электродов, которые позволяли бы удалять газы из межэлектродного пространства .

Если вести электролиз между двумя плоскими электродами, то весь объем выделяющихся газов будет проходить между электродами и повышать сопротивление электролита, находящегося между ними. Электролиз с такими электродами удается вести при невысоких катодных плотностях тока (200—300 а /м 2 ).

Было предложено много различных конструкций электродов, позволяющих газам уходить из межэлектродного пространства . Однако все они не получили большого распространения.

Эффективное удаление газа происходит при циркуляции электролита внутри ячейки, основанной на разности плотностей электролита с газовыми пузырьками и без них. Такую циркуляцию можно создать, применяя «двойные электроды», состоящие из двух плоских листов, скрепленных друг с другом с небольшим зазором. Работающими сторонами электрода являются только наружные поверхности. Внутренние поверхности не работают, и электролит между листами остается свободным от газовых пузырьков. Плотность электролита с наружной стороны электрода, благодаря наличию газовых пузырьков, оказывается меньше плотности электролита между листами. Поэтому электролит между листами, опускаясь вниз, выталкивает электролит с газовыми пузырьками наверх. Образуется довольно интенсивная циркуляция электролита, способствующая выносу газовых пузырьков и, следовательно, снижению газонаполнения.

Наибольшее распространение получили вынесенные вперед перфорированные или сетчатые (однослойные и многослойные) электроды , работающие по принципу двойных электродов.

Во всех типах промышленных ванн для разделения газов применяются диафрагмы, которые изготовляют из асбестовой ткани. Роль диафрагмы — воспрепятствовать смешению газов. Разделение азов должно быть достаточно полным, ибо при смешении газов не только теряются продукты электролиза, но и образуются взрывоопасные, смеси. Смеси оказываются взрывоопасными, если в кислороде содержится более 5% водорода, или в водороде более 5 ,7% кислорода. Вместе с тем диафрагма должна быть достаточно пориста для того, чтобы падение напряжения в ней было незначительно.

Электролиз воды под давлением

Во многих случаях промышленной практики (синтез аммиака, заполнение баллонов сжатым газом и др.) желательно получать газы под давлением. Получение компримированных газов непосредственно из электролизеров значительно сокращает стоимость оборудования, так как делает ненужным применение отдельных компрессорных установок. Предельное, теоретически возможное, давление при электролизе воды составляет около 1860 атм. При этом давлении объем газов равняется объему воды, из которой они получены.

С ростом давления напряжение разложения увеличивается. Действительно, зависимость равновесных потенциалов водородного и кислородного электродов от давления.

Исследования электролиза воды под давлением показали, что такой процесс возможен. При этом было обнаружено, что напряжение на ванне, работающей под давлением, не увеличивалось, а, наоборот, в ряде случаев при повышении давления до 50 атм несколько снижалось. Это явление, согласно исследованиям В. В. Ипатьева с сотрудниками, объясняется тем, что, при электролизе под давлением, объем, занимаемый выделяющимися газами, уменьшается, а это снижает газонаполнение электролита и диафрагмы и уменьшает их сопротивление. Последний фактор перекрывает рост напряжения разложения с повышением давления. На практике оказывается затруднительным вести электролиз при давлениях выше 10—20 атм. Для работы при этих давлениях используются тщательно выполненные и надежно собранные фильтрпрессные электролизеры.

Статья на тему Производство водорода и кислорода

Источник



Водородное топливо

LH2 является самым экологически чистым видом моторного топлива, поэтому его перспективы очевидны

Водородное топливо

Водородное топливо

В Австралии на бурых углях в штате Виктория отрабатывается технология технология газификации угля с последующим выделением водорода, вернее удаления серы, ртути и двуокиси углерода (СО2).

В Норвегии — Nel Hydrogen отрабатывает технологию использования ВИЭ для высокотемпературного электролиза для разделения воды на водород и кислород, который будет выбрасываться в атмосферу.

Kawasaki Heavy Industries разрабатывает морской танкер — водородовоз для транспортировки жидкого водорода ( LH2).

Водород

Водород (H) является самым распространенным элементом на Земле, но в обычных условиях он не встречается ни в виде водорода H, ни в виде газообразного водорода (H2).

Благодаря своим характеристикам он легко вступает в реакцию с другими органическими соединениями с образованием, например, воды (H2O).

Во время этой реакции образования воды из водорода и воздуха выделяется энергия, которую можно использовать в качестве электричества.

Чтобы сделать эту реакцию полезной для промышленного производства электроэнергии, необходимо произвести водород, например из воды путем разделения атомов на кислород и водород посредством электролиза.

Есть другие технологии:

  • использование газов, оставшихся от химических процессов, например метана, угля, нефти и биомассы.

Для производства водорода существуют разные способы, которые сильно различаются как с точки зрения экологичности, так и с точки зрения стоимости.

Реакция взаимодействия водорода с кислородом происходит с выделением тепла.

Если взять 1 моль H2 (2 г) и 0,5 моль O2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

после завершения реакции образуется 1 моль H2O (18 г) с выделением энергии 285,8 кДж/моль.

Для сравнения: теплота сгорания ацетилена — 1300 кДж/моль, пропана — 2200 кДж/моль.

1 м³ водорода весит 89,8 г (44,9 моль), поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии.

1 кВт*ч = 3600 кДж, поэтому получим 3,56 кВт*ч электроэнергии.

Целесообразность перехода на водородное топливо можно оценить, сравнив имеющийся тариф на 1 кВт*ч электричества и, к примеру, стоимость 1 м³ газа или стоимость другого энергоносителя.

Получение водорода

  • 1.Электролиз водных растворов солей:

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

  • 2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:
  • 3.Из природного газа.

Конверсия с водяным паром: CH4 + H2O ⇄ CO + 3H2 (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO + 4H2

  • 4. Крекинг и реформинг углеводородов в процессе переработки нефти.
  • 5. Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:
  • 6.Взаимодействие кальция с водой:
  • 7.Гидролиз гидридов:
  • 8.Действие щелочей на цинк или алюминий:
  • 9 .С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H3O + + 2e — → H2↑ + 2H2O

  • Биореактор для производства водорода

Физические свойства

Химические свойства

Молекулы водорода Н довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2 и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.

Он может «отнимать» кислород от некоторых оксидов, например:

Записанное уравнение отражает реакцию восстановления — процесс, в результате которого от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются).

Реакция восстановления противоположна реакции окисления.

Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

С галогенами образует галогеноводороды:

F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

Источник