Меню

Во что накапливать ток

12 домашних накопителей энергии, которые могут соперничать с Тесла PowerWall 2.0

Главная > Подключение и установка > Аккумулятор для дома

Во время проживания вне больших городов собственники домов часто сталкиваются с проблемой перебоев в электроснабжении. Это бывает по многим причинам, например, из-за износа линий электропередач, погодных условий или неправильного разделения нагрузки. Чаще всего для решения этих проблем устанавливается резервное питание частного дома, которое бывает нескольких типов и решает различные задачи. В данной статье рассмотрены виды ИБП, какой резервный источник выбрать, и какими характеристиками обладает АКБ.

АКБ для частного дома

АКБ для частного дома

Источник бесперебойного питания

Для обеспечения снабжения электрическим током жилого помещения без перерыва существует несколько видов ИБП, которые классифицируются по исполняемым функциям. К ним относятся:

  1. Комплекс агрегатов, призванных подключаться автоматически при нарушении снабжения сетевой электроэнергии. Во время аварийных ситуаций автоматика самостоятельно принимает решение и подключает резервный источник питания, снабжающий дом и основные бытовые приборы. При этом сетевая линия отключается до момента возникновения подачи энергии;
  2. Постоянный источник электроснабжения. Эти приборы призваны обеспечивать постоянное снабжение электричеством жилой дом, что создает независимую от центральной линии систему, которая способна генерировать и накапливать энергию, используя аккумуляторы.

В обеих указанных выше системах имеется аккумуляторная батарея, которая является неотъемлемой их частью и используется в качестве накопителя и хранилища тока.

ИПБ

ИПБ

Также ИБП можно классифицировать, основываясь на принципе генерации электричества. В каждом из агрегатов есть свой источник питания: в первом случае это АКБ, которая накапливает ток во время работы приборов от центральной сети, а во втором – в качестве генерирующей силовой установки могут выступать солнечные батареи, бензиновый или дизельный генератор или ветряк. Подобная система особенно выгодна в отдаленных участках, при отсутствии поблизости центрального снабжения электричеством.

III. Комплекты с высокой мощностью и автономией

Проверенные временем решения для питания всей фазы или 3-х фаз через коммутатор

  • Максимальная мощность – 6.0кВт
  • Время автономной работы – выше среднего
Нагрузка: 100Вт 500Вт 1000Вт
Автономия: 122ч. 16.3ч. 6.8ч.
  • Максимальная мощность – 9.0кВт
  • Время автономной работы – высокая автономия
Нагрузка: 100Вт 500Вт 1000Вт
Автономия: 51ч. 39ч. 16ч.
  • Расширенная гарантия на 2 года
  • Бонусы при покупке – уточняйте у менеджеров
Нагрузка: 100Вт 500Вт 1000Вт
Автономия: 20сут. 64ч. 27ч.

Виды АКБ для источника бесперебойного питания

Аккумулятор для шуруповерта

Аккумуляторы для дома, используемые как резервное электроснабжение или в качестве основной коммуникации с альтернативным источником питания, в зависимости от своей конструкции бывают нескольких видов:

  1. Свинцово-кислотные АКБ – это блоки, в которых электролит расположен внутри металлической сетки, между которыми находятся синтетические волокна, пропитанные жидкостью. Данные батареи широко используются для источников бесперебойного питания, так как быстро заряжаются и выдают большее количество энергии. Но в связи с тем, что структура свинцовых пластин пористая, срок службы подобных деталей весьма ограничен и составляет не более пяти лет;
  2. Гелиевые аккумуляторы – это сложно устроенный агрегат, накапливающий и отдающий электрический ток, внутри которого вместо жидкого электролита расположен пропитанный гель. Он контактирует со стержнем, возникает электрохимическая реакция, но, благодаря свойствам геля, побочного эффекта в виде газа не возникает, поэтому эти батареи изготавливаются в герметичном корпусе.

Свинцово-кислотный АКБ

Свинцово-кислотный АКБ

Таким образом, исходя из физико-химических свойств перечисленных АКБ, можно сделать вывод, что резервное электроснабжение лучше устраивать, используя гелиевые батареи, так как они обладают глубоким разрядом, что очень важно при необходимости обеспечить электричеством частный дом во время отключения основной линии. А для организации источника бесперебойного питания по альтернативной схеме лучше подходит АКБ, созданный по свинцово-кислотной технологии.

Важно! В обоих типах батарей, так как выделения газа являются минимальными, корпус изготавливается герметичным, и обслужить его не получится. После выработки своего ресурса изделие подлежит утилизации согласно техническим требованиям.

Гелиевый АКБ в герметичном корпусе

Гелиевый АКБ в герметичном корпусе

Многие собственники индивидуального жилья, выбирая аккумуляторы для дома, используемые при отключении электричества, в целях экономии пытаются заменить более дорогие гелиевые или свинцово-кислотные АКБ простыми батареями с жидким электролитом, которые предназначены для автомобилей. Конечно, их стоимость значительно ниже, но и функции, которые они выполняют, отличаются. Данный агрегат предназначен для максимальной выдачи тока определенного номинала и мощности, чтобы раскрутить стартер двигателя и выполнить его запуск. Он обладает хорошими характеристиками по короткому импульсу, но для длительной работы не подходит, так как быстро разряжается. К тому же его подзарядка занимает значительно больше времени, чем гелиевые или свинцово-химические АКБ.

Резервное электроснабжение: принцип работы

Энергоснабжение частного дома может осуществляться несколькими способами. В первую очередь, это сетевая линия, подающая электричество, генерируемое городской станцией. Преимуществом данной системы является то, что ток, поставляемый от организации, имеет хорошие характеристики, большую мощность и устойчивые показатели. К тому же собственнику жилья нет необходимости следить за электрооборудованием, все обслуживание системы проводят электроэнергетики со специализированной организации.

Также нередко применяется индивидуальное снабжение электроэнергией с применением альтернативных источников питания, таких как солнечные батареи или генераторы. Преимущества данной системы – это ее независимость от сетевой организации и бесперебойное снабжение током жилого помещения. Но для устройства подобной схемы понадобятся определенные знания и опыт, поэтому при планировании обеспечения дачи или частного дома электричеством именно от независимого источника стоит обратиться к квалифицированным специалистам.

Не важно, какой вид энергоснабжения выбран, обязательно нужно предусмотреть резервное питание для частного дома. Эта система позволяет организовать данный тип коммуникации таким образом, что даже во время отключения основной линии электропередачи или возникновения аварийной ситуации вместо генератора включается аккумулятор, который на протяжении некоторого времени позволяет пользоваться электричеством для поддержания хотя бы минимального комфорта и работы основных бытовых приборов. В каждой из систем предусмотрен свой тип АКБ, в зависимости от решаемой задачи.

Принцип работы резервного питания весьма прост: он заключается в непрерывном накоплении тока в емкости аккумулятора при рабочей сети. То есть в системе имеется зарядное устройство, которое подключено к АКБ и общей линии. Во время отключения тока происходит обратная реакция, и накопленная энергия устремляется на потребителя, после возникновения подачи электричества все процессы возвращаются в исходный вариант.

Аккумулятор для частного дома: схемы подключения

Схема подключения АКБ

Литий ионный аккумулятор

Схема подключения АКБ

Резервное электроснабжения для загородного дома с использованием аккумулятора может монтироваться по двум основным схемам:

  1. Последовательное соединение АКБ. При этом напряжение будет увеличиваться кратно, например, при использовании батареи номиналом 12В два последовательно соединенных изделия образуют сеть, равную 24В, чем больше аккумуляторов, тем выше этот показатель;
  2. Параллельная схема. В данном случае кратно увеличивается не напряжение, а сила тока, при этом мощность остается равной 12 Вольт, не зависимо от количества приборов.

Схему подключения необходимо применять в зависимости от расчета потребляемой энергии на бытовые приборы и в соответствии с нужным напряжением.

IV. Комбинированые решения

резеврное питание + докачка мощности, работа с трехфазной сетью, работа с генератором!

  • Расширенная гарантия на 2 года
  • Бонусы при покупке – уточняйте у менеджеров
Нагрузка: 100Вт 500Вт 1000Вт
Автономия: 51ч. 6.8ч. 2.9ч.
  • Расширенная гарантия на 2 года
  • Бонусы при покупке – уточняйте у менеджеров
Нагрузка: 100Вт 500Вт 1000Вт
Автономия: 161ч. 22ч. 9ч.
  • Максимальная мощность – 6.0кВт
  • Время автономной работы – выше среднего
Нагрузка: 100Вт 500Вт 1000Вт
Автономия: 122ч. 16ч. 7ч.

Если Вы не нашли подходящий вариант комплекта – свяжитесь с нами для получения индивидуального расчета: [email protected] или по телефону

Технические характеристики АКБ для дома

Как заряжать литий ионный аккумулятор

Многие производители предлагают батареи с индивидуальными показателями, но большинство из них относительно схожи и имеют следующие характеристики:

  1. Рабочее напряжение номиналом 12 Вольт. Это средний показатель наиболее распространённых изделий; бывают АКБ и 24 Вольта, но используются они весьма редко;
  2. Емкость батареи для резервирования электроэнергии бывает разной: от 50 до 500 А/час. При необходимости больших объемов питания такие АКБ можно соединить в параллельную схему. Определить номинальную емкость изделия можно по весу: чем он выше, тем больше в детали свинцовых пластин, соответственно, и электрически заряженного материала намного больше;
  3. Габариты и корпус. В большинстве моделей в качестве оболочки используется герметично запаянный пластик, который хорошо переносит перепады температур и не боится влаги, а также окисления внутренней среды;
  4. Максимальный цикл заряда и разряда детали. В зависимости от емкости и устройства АКБ, она бывает от 50 до 250 циклов. Выбирать батарею для использования в бесперебойном электропитании необходимо, учитывая этот параметр, так как чем выше данный показатель, тем дороже будет АКБ.

Это основные характеристики, которые присущи большинству моделей аккумуляторов, используемых в качестве накопителя энергии в системах бесперебойного или аварийного электроснабжения.

Техника безопасности при эксплуатации АКБ

Дача является местом временного пребывания, поэтому при организации электроснабжения с использованием аккумуляторов, не зависимо от их вида, необходимо соблюдать основные правила техники безопасности при монтаже и эксплуатации, чтобы в момент отсутствия собственника в жилом помещении не возникло аварийных ситуаций.

В первую очередь, это обеспечение хорошей циркуляции воздушных масс в технической комнате, в которой расположены батареи. Так как побочным эффектом зарядки АКБ является образование вредного для человека газа в момент закипания электролита, его скопление может привести к отравлению или аллергической реакции. Поэтому для качественного проветривания помещение нужно оборудовать приточной и вытяжной вентиляцией, желательно работающей в автоматическом режиме.

Автоматический выключатель

Автоматический выключатель

Необходима установка термостатического датчика, отключающего питание зарядного устройства. Это необходимо для предотвращения вздутия или разрыва АКБ во время достижения им максимальной емкости.

Нужно периодически замерять рабочие параметры батареи, используя мультиметр или другое оборудование. Если технические характеристики в процессе эксплуатации значительно упали, то деталь необходимо заменить и провести точную диагностику всей системы для выяснения причины.

Запрещается использовать в резервном или автономном энергоснабжении автомобильные аккумуляторы с жидким электролитом. Так как они обладают низким ресурсом с точки зрения цикла подзарядки, который равен не более 50 раз, то срок их службы в данной системе составит не больше 6 месяцев.

Таким образом, при правильном выборе и грамотной эксплуатации аккумулятора для резервного питания частного дома оборудование прослужит вес срок, заявленный производителем, и не доставит проблем собственнику жилого помещения.

Источник

Виды источников тока

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

Читайте также:  Как из кота получить ток

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Когда скорость химических реакций замедляется, элемент перестает вырабатывать электрический ток. В таких случаях говорят, что элемент разрядился – «села батарейка».

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Существуют другие и типы, например, «квадратная» батарейка 3R12, имеющая ЭДС 4,5 Вольт и используемая в карманных фонариках. А, так же, небольшая батарейка вида pp3 с ЭДС 9 Вольт, часто называемая «Крона» или «Корунд».

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Читайте также:  Источник тока это в физике рисунок

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено \(\large P_<1>\), по правую сторону — \(\large P_<2>\) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы \(\large \varphi_<1>\) и \(\large \varphi_<2>\). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

\[\large \varphi_ <1>> \varphi_<2>\]

Обратите внимание: источник тока (сторонние силы) заставляет двигаться электроны – отрицательно заряженные частицы, от точки с меньшим потенциалом, в точку с потенциалом большим, а электрический ток направлен в противоположную сторону — от «+» к «-».

Разность потенциалов так же называют электрическим напряжением.

\[\large \Delta \varphi = \varphi_ <2>— \varphi_ <1>= U \]

\(\large \varphi \left( B \right) \) – потенциал, измеряется в Вольтах;

\(\large U \left( B \right) \) – напряжение, измеряется в Вольтах;

Источник

Накопители энергии для эффективной работы энергосистемы

С самого момента появления электрических сетей большой проблемой была зависимость уровня потребления энергии от времени суток. В наше время к ней прибавилась зависимость выработки электроэнергии от множества факторов, быстро меняющихся в течение дня. Да, увы, такова плата за прогресс — внедрение альтернативной энергетики. Помочь решить проблему способны накопители электроэнергии.

Для гармонизации пиков производства и потребления электроэнергии нужно использовать накопители большой емкости. И в первую очередь следует определиться, где их устанавливать.

Загорская ГАЭС

Загорская ГАЭС

Накопитель, установленный на электростанции

Довольно распространенное решение в солнечной энергетике. В готовый комплект солнечных панелей, применяемых в жилом секторе, как правило, входят аккумулятор и контроллер, управляющий его зарядом-разрядом. В итоге пользователь получает привычный ему интерфейс — стандартную розетку, с которой можно стабильно снимать мощность не выше определенного значения. На солнечных электростанциях, работающих по технологии Thermal Solar, а это, как правило, очень крупная электрогенерация, под действием солнца плавятся минеральные соли, их расплав держит тепло длительное время, хоть всю ночь. Благодаря данной особенности генерация электричества стабильно происходит круглые сутки.

Накопитель, установленный у потребителя

Решение, активно продвигаемое сейчас на рынок рядом производителей, в том числе компанией Tesla. Аккумулятор заряжается от сети в промежуток времени, который задал контроллеру пользователь. Например, это может быть временной интервал, когда цены на электроэнергию самые низкие. Тогда накопитель позволяет экономить средства клиента, а для электросетевой компании — получить реальный эффект снижения пиковой нагрузки на сеть за счет применения нескольких тарифов в зависимости от времени суток. Другое преимущество — появляется возможность подключать к электросети приборы с большей мощностью, чем позволяет линия электропередачи, идущая к клиенту. Накопитель потихоньку запасает энергию на протяжении длительного промежутка времени, а затем отдает большую мощность на протяжении относительно короткого промежутка времени. Скажем, не позволяют провода, идущие к потребителю, передавать ток более 10 А.

Но современные электропечи для кухни потребляют не менее 16 А. Выход простой — ставим накопитель. Пока вы спите или занимаетесь своими делами, он в течение 4 часов накапливает нужное количество энергии, отдавая потом в электропечь на протяжении 2 часов ток 16 А, позволяя вам запечь индейку (пример учитывает потери в преобразователе и аккумуляторе).

Накопитель, установленный в ключевых узлах электросети

Идея, на самом деле, довольно старая. Например, в 1987 году рядом с Москвой была построена Загорская гидроаккумулирующая электростанция (ГАЭС), позволяющая сгладить пики потребления, характерные для большого города. Самый известный проект, реализованный в 2017 году — увеличение суммарной подключаемой мощности в одном из удаленных регионов Австралии без реконструкции ЛЭП. Компания Tesla поставила гигантский накопитель, который равномерно запасает электроэнергию, не создавая ярко выраженных пиковых нагрузок на ЛЭП, что позволило избежать ее реконструкции. Но клиенты электрической компании могут получать от накопителя на пиках потребления гораздо большую мощность, чем могла бы выдержать ЛЭП.

В зависимости от места установки определяется емкость накопителя. Емкость накопителя, используемого в солнечных электростанциях для индивидуального применения, составляет не более 2 кВтч. Накопители, устанавливаемые у бытового потребителя, имеют емкость не более 7 кВтч. Для промышленных потребителей под заказ изготавливают накопители емкостью 100 кВтч. Что же касается накопителей, устанавливаемых в узлах энергосистемы, то их емкость составляет порядка сотен МВт — единиц ГВт.

Аккумуляторы

Для накопителей, выравнивающих энергопотребление, обычные свинцово-кислотные аккумуляторы не подходят. Это связано с малым количеством циклов заряда-разряда, а также необходимостью обслуживания аккумуляторов (при-ходится регулярно доливать дистиллированную воду из-за испарения электролита). В солнечных электростанциях небольшой мощности применяются так называемые гелевые аккумуляторы. В них электролит находится не в форме жидкости, а в форме геля. Такие аккумуляторы не требуют обслуживания. Их недостатком является то, что при зарядке свыше номинального уровня они быстро выходят из строя, но эта проблема решается при помощи современных микропроцессорных контроллеров. Уникальным преимуществом гелевых аккумуляторов является их возможность работы при низких (до —15°С) температурах. Благодаря этому нет необходимости специально отапливать накопитель, размещенный на улице, достаточно тепла, отводимого от контроллера.

Более совершенными являются никель-кадмиевые (NiCd) аккумуляторы. Они надежны и обеспечивают сохранение большего количества энергии в меньшем объеме. Тем не менее для накопителей энергии, сглаживающих пики потребления в сети, данные аккумуляторы непригодны из-за ярко выраженного «эффекта памяти». При неполном разряде и последующем заряде емкость аккумулятора снижается. Требуется полностью разряжать аккумулятор и потом заряжать его до 100%. Для рассматриваемого применения такие аккумуляторы непригодны. Более продвинутые никель-металлогидридные (NiMH) аккумуляторы обладают большей емкостью, «эффект памяти» в них менее выражен, но все-таки присутствует.

Аккумуляторы типоразмера 18650

Аккумуляторы типоразмера 18650 используются в электромобилях,
и они же являются основой накопителей энергии

Наиболее популярным сейчас являются литий-ионные (Li-Ion) аккумуляторы. Именно их сейчас используют в накопителях, устанавливаемых непосредственно у потребителей, а также в ключевых местах электросети. Кстати, идея создания накопителя, стоящего у потребителя дома, возникла из необходимости использования аккумуляторов типоразмера 18650, применяемых в электромобилях. По мере износа аккумуляторной батареи в электромобиле производитель забирает ее себе обратно (почему — будет сказано далее). Аккумуляторы, которые уже не могут обеспечить нужную тягу электромобилю, тем не менее подходят для использования в бытовом накопителе энергии. После всестороннего тестирования их туда и ставят. Что же касается накопителей, устанавливаемых на узлах электросети, то в них используют новые аккумуляторные батареи, но есть проекты построения таких накопителей и на основе аккумуляторов, ранее стоявших в электромобилях.

Накопитель Tesla Powerwall 2

Накопитель Tesla Powerwall 2

Преимуществами Li-Ion аккумуляторов являются: высокая плотность накапливаемой энергии, пренебрежительно малый уровень «эффекта памяти», низкое выходное сопротивление, что позволяет на пиках нагрузки отдавать потребителю большую мощность. Но есть и недостатки. При неправильных зарядке и эксплуатации аккумуляторы не просто выходят из строя, они могут воспламеняться и даже взрываться. Проблема решается с помощью микропроцессорных контроллеров в зарядных устройствах, тем не менее, иногда такие устройства могут давать сбои. Литий — чрезвычайно токсичный химический элемент, вот почему производители электромобилей в обязательном порядке забирают себе обратно отработавшие свое аккумуляторы. Наконец, запасы лития в мире ограничены, уже в ближайшее время прогнозируется нехватка этого металла.

Суперконденсаторы

Принципиальным недостатком аккумуляторов является то, что электрическая энергия в них при заряде превращается в химическую, а при разряде — из химической в электрическую. Такие преобразования обуславливают потери энергии, а также ограниченное количество циклов заряд-разряд (до 3000 у массово выпускаемых Li-Ion аккумуляторов).

Решение проблемы заключается в том, чтобы накапливать непосредственно электрическую энергию в конденсаторе. В накопителях применяют так называемые суперконденсаторы (другие названия — ультраконденсаторы, ионисторы) емкостью от 1000 Ф каждый, соединенные в большие массивы.

Суперконденсаторы

Суперконденсаторы — перспективная технология, но пока она слишком дорогостоящая

Ультраконденсаторы имеют КПД, близкий к 100%, количество циклов заряда-разряда у них практически не ограничено. И, что немаловажно, суперконденсаторы безопасны в эксплуатации и не содержат вредных для природы веществ.

К недостаткам суперконденсаторов следует отнести дороговизну этих устройств, а также сопутствующего оборудования. Кроме этого, по плотности хранения энергии суперконденсаторы пока уступают Li-Ion аккумуляторам, что обуславливает большие размеры накопителей.

Гидроаккумулирующая электростанция состоит из нижнего водохранилища, верхнего водохранилища и реверсивных турбин. При избытке электроэнергии в регионе турбины потребляют энергию, поднимая воду из нижнего водохранилища в верхнее. При недостатке электроэнергии турбины переходят в режим генерации, вода из верхнего водохранилища поступает в нижнее, в результате вырабатывается электроэнергия.

Недостатком ГАЭС является то, что при их строительстве приходится вмешиваться в уже сложившиеся природные комплексы. Кроме этого, наиболее успешные проекты ГАЭС были реализованы в горной местности, где есть твердые горные породы и легко обеспечить перепад уровней между двумя водохранилищами. Строительство Загорской ГАЭС в Московской области сопровождалось большими трудностями, связанными с оползнями, из-за чего на полную мощность электростанция заработала в 2003 году. Вторую очередь Загорской ГАЭС начали строить в 2007 году, и, по тем же причинам, на момент написания статьи строительство так и не было завершено.

Зеленчукская ГЭС-ГАЭС

Зеленчукская ГЭС-ГАЭС

Пневматические системы

Принцип их работы достаточно прост. С помощью насоса сжимается воздух и закачивается в резервуар. При необходимости расходования электроэнергии воздух выпускается из резервуара, проходя через турбину, вырабатывающую электроэнергию. Идея тоже древняя, относится к XIX веку. Главный недостаток — КПД не превышает 55%. Тем не менее в XX веке аккумулирующие электростанции на основе сжатого воздуха широко использовались в США и Германии. Кстати, в Германии для закачки воздуха использовались заброшенные соляные шахты. Но потом все сошло на нет — последняя электростанция на сжатом воздухе была запущена в США в 1991 году.

В 2010-х годах идею возродили, и на деньги Европейского союза запущен исследовательский проект Ricas 2020, направленный на поиск новых способов использования сжатого воздуха для накопления энергии с более высоким КПД. Но пока ни о каких реальных результатах не известно.

Супермаховик

Накапливать электроэнергию можно и в механическом виде. Раскрутить тяжелый маховик, и он некоторое время будет вращаться, приводя в действие генератор. Для того, чтобы не мешало трение воздуха, маховик вращается внутри герметичного кожуха, из которого откачан воздух. Технически реализовать эту идею очень просто, КПД достигает 98%. Выпускаются накопители на супермаховиках с емкостью до 25 кВтч. Но широкого применения они пока не получили. Причина заключается в том, что не удается быстро управлять отдачей электроэнергии в сеть. Кроме этого, со временем частота вращения маховика падает, и мощность, отдаваемая накопителем в сеть, падает.

Электромобиль как накопитель

В электромобиле есть аккумуляторы, выпрямитель и инвертор — все элементы накопителя для выравнивания пиков потребления электроэнергии. Почему бы не задействовать электромобиль в качестве накопителя энергии, пока он стоит в гараже?

Читайте также:  Сварочный аппарат с плавной регулировкой сварочного тока

Компании Renault и Nissan уже выпускают электромобили, способные отдавать энергию, накопленную в аккумуляторе. А Schneider Electric создала электрическую зарядную станцию, поддерживающую данную функцию. В Великобритании рассматривается вопрос о том, что-бы предоставлять электромобилям бесплатную парковку в обмен на определенное количество электроэнергии, отдаваемое во время стоянки в сеть.

Электромобиль Renault

Компания Renault начала выпуск электромобилей, способных работать как накопители

Наконец, в той же Великобритании рассматривается законопроект, обязывающий владельцев электромобилей подключать их к электросети для выравнивания баланса все то время, пока они не ездят. С 2018 года компания Renault проводит масштабный эксперимент на португальском острове Мадейра по испытанию технологии обратной поставки электроэнергии в сеть от электромобиля.

Будущее — за распределенным хранением энергии?

Технологии сглаживания пиков выработки электроэнергии и ее потребления, существовавшие до недавних пор, исходили из реалий XX века — централизованной энергосистемы без возможности управления оборудованием, установленным у клиента. Установка гигантского накопителя на аккумуляторах в Австралии — это всего лишь способ улучшить энергосистему, созданную в прошлом веке, но не изменить ее кардинально.

С распространением альтернативной энергетики генерация становится все более децентрализованной. При этом уже нельзя точно определить место в энергосистеме, куда следует подключить гигантский аккумулятор, чтобы выровнять баланс. По мнению автора статьи, будущее принадлежит не только децентрализованной генерации, но и децентрализованному хранению электроэнергии. В каждой квартире, в каждом офисе или заводе будет стоять локальный накопитель электроэнергии. Путем предоставления скидок или жесткого законодательного регулирования пользователя простимулируют (обяжут) подключать такой накопитель к управляющей системе. Электроэнергетическая компания будет с помощью технологии «Интернета вещей» дистанционно регулировать процесс накопления электроэнергии и отдачи ее в сеть. Тем самым будут сглаживаться пики выработки и потребления электроэнергии.

На самом деле, «первой ласточкой» такого подхода уже стали серьезные вложения британского правительства в разработку технологии использования электромобилей как накопителей для электросети и проект законодательно обязать владельцев электромобилей использовать их в таком качестве.

В итоге гигантские накопители энергии вроде ГАЭС или же огромной аккумуляторной батареи, установленной в австралийской пустыне, станут просто не нужны. Накопление электроэнергии будет осуществляться только у пользователей, в недорогих компактных устройствах. Развитие технологии суперконденсаторов позволит обеспечить надежность и безопасность таких накопителей.

Источник: Алексей Васильев, журнал «Электротехнический рынок» №3 Май-Июнь 2019

Источник



Накопитель энергии

Тепловой аккумулятор

Накопитель энергии – устройство, с которым большинство из людей постоянно сталкивается в быту. Всем знаком аккумулятор мобильного телефона, автомобиля, пальчиковые батарейки, которые не предусматривают повторной зарядки. Однако понятие энергетического накопления гораздо шире представлений среднестатистического индивидуума. Есть множество теорий, футуристических проектов и изысканий. Но интересно посмотреть, что реально может накапливать энергию и уже используется в самых разных областях деятельности человека.

Потенциальная энергия Механизм Часы ходики

Самый неочевидный накопитель собирает показатель потенциала, поднятого на высоту тела. Это устройство знакомо многим. Часы-ходики с массивными грузиками используют именно физический потенциал. Пока одна из гирь опускается, механизм работает. Для накопления запаса энергии требуется завести часы – переместить грузы определенным способом. Другие аккумуляторы потенциала работают не таким очевидным способом.

Гидроэлектростанции

Гидроэлектростанция – самый большой энергетический накопитель потенциального типа. Работает это следующим образом:

  • главная часть гидроэлектрической станции – огромная плотина. Она замыкает большую территорию, создавая водохранилище, которое наполняется рекой или другим источником воды;
  • в основании железобетонной стены станции находится основное инженерное решение для производства электричества. Падающая с большой высоты вода преобразует свою потенциальную энергию в кинетическую;
  • при воздействии потока воды на лопатки турбины кинетика преобразуется в электричество.

Гидроэлектростанции классического типа, а точнее, их водохранилища – накопители энергии потенциального типа. Этот источник относится к возобновляемому. Поток воды постоянно пополняет искусственное озеро, при этом предусмотрены методики отвода жидкости в период, когда объем водохранилища на максимуме, а потребности в производстве электричества нет.

Энергетические накопители потенциального типа несколько другого принципа действия используются в аккумулирующих резервуарах гидроэлектростанций. Такой тип инженерных решений относится к вспомогательному и применяется в совокупности с другим источником. Часто – в солнечных электростанциях, построенных в местностях с мягким климатом. Работает все следующим образом:

  • в период максимальной солнечной активности электроэнергия, которую производит солнечная станция, не нужна, потребности городов и энергосети, в общем, малы;
  • электричество направляется на работу насосов, которые закачивают воду в огромный искусственный резервуар;
  • в темное время суток, если нужно направить дополнительный поток электрической мощности в общую систему, включается механика гидроэлектростанции. Потенциал накопленной воды используется для работы турбин.

Станции, которые используют накопители энергии воды, становятся все более популярными. К достоинствам такого решения относится способность не только полностью использовать мощности основного производителя, но и гарантировать круглосуточный режим отдачи электричества в общую сеть.

Существуют и решения, оперирующие твердым грузом. К ним относятся системы, построенные на простой идее:

  • во время работы солнечных батарей или ветрогенераторов излишек их мощности направляется на двигатели, которые перемещают вагоны по рельсовому пути вверх, по наклонной поверхности;
  • в то время, когда солнца или ветра нет, тележки двигаются вниз, на их осях расположены генераторы, производящие электричество.

Достоинств у механического решения предостаточно. Здесь малые требования к мощности двигателей, используемых для подъема груза. Для перекачки воды нужно несравненно большие величины как токов, так и давления.

Накопители потенциальной энергии имеют одно неоспоримое достоинство: запасенное можно хранить практически без потерь крайне долго. Потери воды в огромном резервуаре из-за испарения почти незаметны, а если идет речь о поднятии груза, его легко зафиксировать механически в верхней точке.

Недостаток сбора потенциальной энергии также очевиден. Чтобы получить промышленные объемы использования или долговременную работу устройства в быту, нужно или оперировать огромными массами, так сказать, энергоносителя, или гарантировать низкое потребление преобразованной энергии.

Водяная станция

Накопители тепловой энергии

Тепловые накопители – распространенные устройства. Самый знакомый рядовому потребителю – электрический нагревательный котел. Он накапливает тепло, которое затем используется для бытовых нужд, отопления.

Менее понятный класс – тепловые накопители энергии, выполняющие роль стабилизаторов. К ним относятся:

  • водонагреватели, построенные на вторичной схеме передачи тепла;
  • расширительные емкости солнечных коллекторов, которые не допускают перегрева теплоносителя и стабилизируют режим работы батареи;
  • теплоаккумулятор может строиться на принципе фазового перехода. Расплав нагревается до высокой температуры, при этом теплоноситель переходит из твердого состояния в жидкое.

Проблем у накопителей тепловой энергии достаточно много. К примеру:

  • энергию нужно использовать быстро. С течением времени содержимое накопителя просто теряет энергию, отдавая ее в окружающую среду;
  • построенные на фазовом переходе накопители сложны в эксплуатации. Здесь наблюдается изменение объема: если жидкость переводят в пар, приходится бороться с огромным давлением.

Современные системы тепловой защиты позволяют долго сохранять характеристики накопителя тепловой энергии. Но здесь играет роль баланса стоимости защиты и целевого использования энергии. Поэтому накопители тепла идеальны в роли компенсаторов. В это же время их эффективность в качестве мощного источника энергии со стабильными показателями отдачи весьма спорна.

Тепловой аккумулятор

Аккумуляторы энергии сжатого газа

Пневматический инструмент, газопоршневые генераторы, небольшие кары – вот краткий список устройств, которые используют энергию сжатого газа. Устройство накопителя энергии знакомо практически всем. Это надежная, прочная колба из стали, в которую под огромным давлением закачивается газ.

Уровень выхода энергии накопителя сжатого газа нестабилен. Он велик, пока давление внутри баллона близко к максимуму. И снижается по мере расходования газа. Для стабилизации выхода используются редукторы. Они обеспечивают постоянное давление на выходе, что не только создает оптимальные условия работы потребителя, но и продлевает срок эффективного расходования запаса газа.

Накопитель энергии

Накопители энергии сжатого газа применяются и в роли компенсаторов. Стабилизация работы компрессора производится при помощи расширительной емкости. В нее закачивается газ основным двигателем, поддерживается конкретное давление. При использовании энергии пневмоинструментом, компрессор может включаться периодически, поддерживая стабильное состояние системы. Основная мощность поступает именно из накопителя, расширительного баллона, совмещенного с редуктором.

Главное достоинство аккумулятора сжатого газа – простота манипулирования. Соблюдается некий термический баланс, когда в режиме компенсатора выделенное тепло при сжатии газа соответствует количеству энергии при расширении рабочего тела. К другому плюсу относится надежность инженерного решения. Прочность баллона такова, что он может заправляться неоднократно, служить на протяжении десятков лет. Третий плюс – при наличии надежной перекрывающей арматуры или запайки емкости, газ может сохранять свои параметры и энергетику очень долго.

Накопители электрической энергии

Аккумуляцию электроэнергии можно проводить разными способами. Сегодня к самым распространенным и широко используемым средствам относятся конденсатор, ионистор, химические преобразователи, накопители заряда активных частиц.

Конденсатор

Данный класс аккумулятора электрической энергии – знакомое всем устройство, конструкцию, так называемой, лейденской банки проходят еще в школьном курсе физики. Заряд накапливается на двух пластинах. Современные конденсаторы имеют прокладку, изготовленную из полимера с высокими показателями пробоя. Это позволяет:

  • накапливать большое количество энергии;
  • работать большими значениями напряжения;
  • гарантировать безопасность использования;
  • обеспечить малые размеры накопителя.

Соединенные параллельно элементы позволяют построить батарею с нужным показателем емкости. Данный тип накопителя не может сохранять энергию долго без потерь. К тому же, собирается ее довольно мало. Но при малом потреблении конденсатор может быть достаточно эффективен. Сегодня именно такие накопители используют в аварийных светодиодных лампах.

Во время питания конденсатор заряжается, при отсутствии энергоснабжения светильник работает в течение получаса, чтобы люди могли принять меры к устранению причин перебоя, лечь спать или перевести оборудование в режим консервации.

Ионистор

Ионисторы, или, как их еще называют, суперконденсаторы, используют несколько другую схему накопления энергии. Здесь заряд распределяется в объеме рабочего тела в виде заряженных частиц. В результате достигаются огромный (по сравнению с конденсаторами) срок хранения энергии и емкость, но наблюдается крайняя чувствительность к температуре. Чем ниже температура рабочей среды, тем меньше отдача тока от накопителя энергии.

Аккумуляторы химического преобразования

Электрохимическая ячейка – основа большинства автомобильных, мотоциклетных и других привычных типов аккумуляторов. Схема работы накопителя проста:

  • в результате взаимодействия пластины металла и кислоты образуются заряженные ионы;
  • в ходе работы соли осаждаются на пластине из катализатора;
  • по мере понижения насыщенности электролита аккумулятор истощается – уровень выдачи энергии снижается.

При зарядке происходит обратный процесс. Электролиз восстанавливает показатели электролита, переносит металл на пластину-донор. Достоинств у электрохимического аккумулятора множество. Можно получить стабильный и высокий выходной ток, что ценно для пуска мощного оборудования. Легко создать устройство с высокой емкостью, полезное для долгой работы различного оборудования.

К недостаткам электрохимической ячейки классического типа относится конечное число циклов заряда-разряда. Некоторое количество солей металла становятся инертными, пластины приходят в негодность, истощается электролит. Данные недостатки в большой степени нейтрализованы в гелевых батареях. Этот современный источник энергии содержит коллоидный электролит. В нем лучше проходят процессы образования ионов. Но есть и недостаток – повышается чувствительность к температуре. При ее понижении гель твердеет, показатель отдачи тока падает.

В качестве заключения

Накопители разного типа энергии можно рассматривать очень долго. Это механические – различные пружины. Кинетические – маховики большой массы, используемые, например, в троллейбусах. Аккумуляторы с разным типом носителя ионов – литиевые, никель-марганцевые, кадмиевые. Но использование любого типа накопителя, прежде всего, обуславливается балансом между его характеристиками и показателями потребления энергии.

Источник