Меню

Величина магнитного момента витка с током зависит от площади витка

Применение закона Био-Савара-Лапласа к расчету магнитного поля кругового тока. Магнитный момент витка с током. Магнитный диполь.

Найдем индукцию и напряженность магнитного поля в центре О кругового витка радиуса R с током I. По закону Био – Савара – Лапласа (15.6), магнитная индукция поля, создаваемого в точке О элементом dl витка с током,dB = μμ0Idlsin(dl,^r) / 4πr2.

Магнитная индукция поля в центре кругового тока I направлена вдоль положительной нормали к контуру и численно равна

B=μ I/2R или B= μ/4π*2pm/ R 3, где pm модель вектора магнитного момента. R — радиус проводника, μ — магнитна постоянная. Направление вектора В совпадает с направлением вектора магнитного момента рm.

Магнитная индукция поля кругового витка радиуса R с током I в произвольной точке А на оси витка напрвлена вдоль оси тока и численно равна B= μ/4π*2pm/ (R 2 +r 2 ) 3/2 .

При r>>R (на больших расстояниях от контура) эта формула переходит в формулу для магнитной индукции в центре кругового тока):

В рассматриваемом примере радиус-вектор r перпендикулярен элементу тока dl, а по модулю равен радиусу витка, так что sin (dl, r) = 1 и r = R. ПоэтомуdB = μμ0Idl / 4πR2

Все векторы dB магнитных полей, создаваемых в точке О различными участками dl кругового витка с током, направлены перпендикулярно плоскости чертежа «от нас». Поэтому индукция результирующего поля в точке О ;B = μμ0I / 2R. (15.25)

Напряженность магнитного поля в центре кругового тока—H = B / μμ0 = I / 2R.

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы . Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка , , где S – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так: . А что такое ? Это вектор, направленный вдоль вектора нормали к плоскости витка . А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. Если dS – площадь треугольника, построенного на векторах и , то . Тогда мы пишем магнитный момент равняется . Значит,

(магнитный момент витка с током)=(сила тока) (площадь витка) (нормаль к витку)

Магнитным диполем называется кpуговой ток. Изучим магнитное поле магнитного диполя. Пpямые pасчеты пpоведем лишь для точек поля, лежащих на оси диполя (pис. 3.14). Воспользуемся законом Био-Саваpа-Лапласа и опpеделим поле в точке М создаваемое элементом тока Idl . Вектоp поля dB pасположен пеpпендикуляpно к вектоpу r и к вектоpу dl . Индукции элементаpных полей, создаваемых дpугими элементами кpугового тока, опpеделяются аналогичным обpазом, так что вектоpы dB заполнят коническую повеpхность с веpшиной в точке М. Осью конической повеpхности является ось диполя. Согласно пpинципу супеpпозиции элементаpные индукции необходимо сложить. В pезультате вектоpного сложения pезультиpующее поле будет, очевидно, напpавлено по оси диполя. Модуль pезультиpующей индукции поля В мы найдем, если сложим пpоекции элементаpных индукций на ось диполя.
Таким обpазом, схема вычислений сводится к следующей: (3.27) (3.28) Согласно постpоению угол ОСМ также pавен . Так что Следовательно, (3.29) где S — площадь, огpаниченная током.
В центpе диполя магнитное поле опpеделяется фоpмулой

Читайте также:  Датчик для определения тока

Дата добавления: 2018-05-12 ; просмотров: 1066 ; Мы поможем в написании вашей работы!

Источник

Поле витка с током

Магнитное поле, создаваемое элементом тока.

Для магнитного поля справедлив принцип суперпозиции: магнитная индукция поля B, создаваемого несколькими источниками, равна векторной сумме индукций отдельных источников:

Поэтому магнитное поле тока можно рассматривать, как сумму полей всех движущихся зарядов. Поле, создаваемое участком проводника, повторяет свойства поля движущегося точечного заряда: такая же зависимость магнитной индукции от направления и расстояния; направление силовых линий находится по правилу буравчика (см. рис.9).

Магнитная индукция dB, создаваемая участком проводника длиной dL, рассчитывается по закону Био-Савара- Лапласа:

где I – ток, протекающий через участок проводника; r – радиус-вектор, проведенный от участка проводника в точку, в которой рассчитывается магнитная индукция; dL – вектор, его направление совпадает с направлением тока в проводнике.

Поле, создаваемое проводником произвольной формы, находится интегрированием выражения (13), по всем элементам проводника dL:

Результирующее поле зависит от расстояния до проводника, от конфигурации и размеров проводника, а также от силы тока в цепи.

Рассчитаем магнитную индукцию на оси круглой рамки с током.

Вектор магнитной индукции dB в точке А, создаваемой элементом рамки dL,находится по формуле (10) (см. рис.10)

Вектор dB перпендикулярен r и dL, он направлен под углом φ к оси кольца. Его величина равна

Полное магнитное поле от всего проводника с током находится интегрированием выражения (10) по всему контуру. Прежде, чем интегрировать, отметим, что из-за осевой симметрии задачи результирующая индукция должна быть направлена вертикально вверх. Горизонтальные компоненты вектора dB от различных участков кольца скомпенсируют друг друга, поэтому нас будет интересовать только вертикальная составляющая вектора dB

Для всех участков кольца dL расстояния r до точки наблюдения одинаковы, также не изменяется и угол φ. Проинтегрируем (12) по dL,

С учетом того, что , а , получим

В центре кольца (z = 0) магнитная индукция равна

где nединичный вектор нормали к плоскости кольца.

Следует отметить, что в целом поле кольца с током существенно неоднородно (см. рис.11). Однако в середине витка это поле можно считать достаточно однородным.

Читайте также:  Генератор сварочный бензиновый переменного тока

Если в (13) ток I выразить через магнитный момент кольца pm=IS=πR 2 I, то поле вдоль оси кольца

При большом удалении от витка поле спадает, как 1/z 3 . По такому же закону убывает напряженность электрического поля, создаваемого электрическим диполем. Поведение витка с током в магнитном поле полностью повторяет поведение электрического диполя в электрическом поле. Также виток с током подобен постоянному магниту, у которого имеется два полюса – северный и южный (см. далее). Поэтому виток с током можно рассматривать, как магнитный диполь.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Магнитное поле кругового тока. Магнитный момент витка с током.

Рассмотрим поле, создаваемое током I, текущим по тонкому проводу, имеющему форму окружности радиуса R .

Определим магнитную индукцию на оси проводника с током на расстоянии х от плоскости кругового тока. Векторы перпендикулярны плоскостям, проходящим через соответствующие и . Следовательно, они образуют симметричный конический веер. Из соображения симметрии видно, что результирующий вектор направлен вдоль оси кругового тока. Каждый из векторов вносит вклад равный , а взаимно уничтожаются. Но , , а т.к. угол между и α – прямой, то тогда получим

,

Подставив в и, проинтегрировав по всему контуру , получим выражение для нахождения магнитной индукции круговоготока:

,

При , получим магнитную индукцию в центре кругового тока:

,

Заметим, что в числителе – магнитный момент контура. Тогда, на большом расстоянии от контура, при , магнитную индукцию можно рассчитать по формуле:

,

Силовые линии магнитного поля кругового тока хорошо видны в опыте с железными опилками

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

Читайте также:  Какая сила тока в батарейке 12 вольт

Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Источник



Величина магнитного момента витка с током зависит от площади витка

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы Á . Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка , , где S – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так: . А что такое ? Это вектор, направленный вдоль вектора нормали к плоскости витка . А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. Если dS – площадь треугольника, построенного на векторах и , то . Тогда мы пишем магнитный момент равняется . Значит,

( магнитный момент витка с током ) = ( сила тока ) ( площадь витка ) ( нормаль к витку )

А теперь мы формулу (8.1) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.

Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы Á , тогда поле в точке на расстоянии х равно: ( ). Для круглого витка , . На прошлой лекции мы находили магнитное поле круглого витка с током, при эти формулы совпадают.

На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:

Источник