Меню

В чем измеряют допустимый ток

Прибор для измерения силы тока. Как измерить силу тока мультиметром

28 Ноя 2016г | Раздел: Радио для дома

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

Приборы для измерения тока

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

Обозначение амперметров на электрических схемах

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Включение амперметра в электрическую цепь

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Головка миллиамперметра

Пределы измерения тока в мультиметре

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Схема включения мультиметра в цепь светодиода

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

Гнезда и щупы мультиметра

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Предел измерения тока 2m в мультиметре

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Предел измерения тока в мультиметре

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Предел измерения тока 20m в мультиметре

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Единица на индикаторе мультиметра

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

Положение щупов в гнездах мультиметра при измерении тока на пределе 10А

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Источник

Как выбрать мультиметр (2018)

Как выбрать мультиметр (2018)Любительский

Аватар пользователя

Электричество давно уже стало неотъемлемой частью нашей повседневной жизни, и мультиметр – прибор для измерения параметров электрической цепи – может пригодиться каждому. Не станешь же вызывать электрика для решения таких бытовых вопросов как: цел ли кабель, «жива» ли батарейка, почему не горит лампочка, под напряжением ли провод и т.д.

Автолюбителям мультиметр поможет контролировать работу автоэлектрики и электроники.

А уж если вы сами следите за электрикой в своем доме, мультиметр вам просто необходим.

Области применения мультиметров

Мультиметры – общее название для целого класса электроизмерительных приборов. Они способны проверять целостность электрических цепей, изоляции и заземления; измерять параметры цепи без контакта с проводниками и определять характеристики радиоэлектронных компонентов.

— электриками при обслуживании электрических линий и потребителей;

— электронщиками при сборке, настройке и ремонте радиоэлектронной аппаратуры;

— сервисными инженерами при установке, обслуживании и ремонте электротехники;

— монтажниками при прокладке и расключении линий связи и электропередач;

— автоэлектриками при диагностике и ремонте автомобильной электрики;

Какой именно мультиметр нужен вам – можно понять, определившись измеряемыми параметрами и необходимой точностью прибора.

Характеристики мультиметров

В основном в магазинах предлагаются три типа приборов: мультиметры, тестеры и токовые клещи.

Мультиметр предназначен для измерения параметров электрической цепи. Самые простые модели измеряют только базовые параметры — ток, напряжение и сопротивление.

Модели посложнее способны определить такие характеристики, как емкость конденсатора, частота переменного тока, коэффициент усиления транзистора и т.д. Чем больше параметров определяет мультиметр, чем больше наборов диапазонов их измерений и чем выше точность – тем дороже прибор.

Читайте также:  Зарядное устройство для автомобильного аккумулятора со стабилизацией тока схема

В продаже встречаются мультиметры двух видов – аналоговые (со стрелочным индикатором) и цифровые (с дисплеем).

Цифровые мультиметры предоставляют намного больший функционал, обеспечивают удобство считывания параметров и высокую точность измерения.

На стрелочном индикаторе просто невозможно измерить какое-либо значение с точностью нескольких знаков после запятой. Считать показание на стрелочном индикаторе тоже сложнее. Несколько шкал, неравновесные деления, в некоторых случаях полученное значение еще нужно умножить на коэффициент – неподготовленного человека все это может запутать.

Зато стрелочный индикатор намного удобнее при наблюдении за меняющимися параметрами. Цифровой мультиметр меняет показания на экране от 1 до 4 раз в секунду. И, если частота обновления экрана мультиметра будет близка к частоте измеряемого сигнала, провести измерение не получится. Колебания стрелки аналогового прибора будут намного нагляднее.

Тестер также проводит измерение некоторых параметров цепи, но, в отличие от мультиметра, не выводит полученные значения на экран, а использует их для определения состояния тестируемого объекта и выдачи соответствующего сигнала или сообщения.

Мультиметр можно использовать и для тестирования кабелей и приборов, но тогда вывод о состоянии объекта придется делать самостоятельно

Мультиметр универсальнее, но, во многих случаях, тестером пользоваться проще и быстрее. Впрочем, мультиметры часто содержат в себе и тестеры некоторых параметров, чаще всего – целостности цепи.

Простейшие тестеры способны только определять обрыв цепи, тестеры посложнее могут определить короткое замыкание, наличие тока в цепи, переполюсовку линии постоянного тока.

Самые сложные и дорогие тестеры способны проверить на соответствие требованиям безопасности и нормативных документов множества параметров– сопротивления изоляции, сопротивления заземления, тока утечки срабатывания защиты и т.д.

Токовые клещи – это специализированный мультиметр, способный измерить силу тока в отдельном проводе без разрыва цепи и нарушения изоляции. Для этого используется способность электрического тока индуцировать (возбуждать) ток в проводниках, находящихся поблизости. Такие проводники и скрыты в клещах, которые – для измерения тока – следует наложить на провод. Токовые клещи незаменимы для определения нагрузки на линии электропередач, определения потребляемой мощности и т.д.

Даже недорогие клещи способны с приемлемой точностью измерять силу тока до 1000 А и напряжение до 1000 В. Дорогие клещи могут измерять силу тока до 2500 А и используют метод TrueRMS, повышающий точность измерения параметров переменных токов.

Виды измерений параметров электрической цепи. Для бытового использования достаточно, если прибор сможет измерять:

— один-два диапазона измерения переменного напряжения (0-200 В, 0-400 В) – для потребительских сетей;

— два-три диапазона измерения постоянного напряжения (0-200 мВ, 0-2 В, 0-20 В, 0-100 В) – для батареек и аккумуляторов;

— несколько диапазонов (0-20 мА, 0-2 А, 0-10 А, 0-100 А) силы тока в цепях постоянного и переменного тока – для определения нагрузки на кабель и потребляемой мощности электроприборов;

— несколько диапазонов измерения сопротивления – для определения целостности цепей и проверки кабелей и бытовой техники на короткое замыкание.

Очень полезно наличие функции проверки целостности цепи («прозвонки») со звуковым сигналом — с помощью этой функции легко и быстро проверяется как наличие контакта, так и отсутствие короткого замыкания.

Для проверки радиодеталей потребуется наличие дополнительных возможностей:

— измерение сопротивления резисторов и проводников;

— измерение индуктивности катушек и дросселей;

— измерение коэффициента усиления транзисторов;

— измерение емкости конденсаторов;

проверка диодов.

Также некоторые мультиметры предлагают возможность измерения частоты переменного тока, потребляемой мощности электроприборов и температуры – последнее обычно реализуется с помощью измерения напряжения (термоЭДС) на концах термопары, входящей в комплект поставки.

Обратите внимание на максимальное рабочее напряжение. Это – то напряжение, которое может выдержать электроника прибора. Его превышение с высокой вероятностью приведет к поломке.

Важной характеристикой, во многом определяющей цену прибора, является погрешность измерений. Погрешность измерения каждого параметра различна и складывается из базовой погрешности АЦП и погрешности преобразования параметра в каждом конкретном диапазоне. Базовая погрешность дает только приблизительное представление о точности прибора. Всегда следует обращать внимание на погрешности измерения по каждому из параметров в конкретных диапазонах – они могут превышать базовую в разы.

Количество единиц счета мультиметра показывает, на сколько промежутков делится измерямый диапазон и определяет величину дискретизации. Так, для диапазона 0-100 мА у мультиметра с 6000 единицами счета величина дискретизации будет 100/6000 ≈ 0,017 мА. И значение 0,034 на экране этого мультиметра вовсе не означает, что сигнал измерен с точностью до 0,001 мА: значение 0,035 он просто не способен отобразить. Разумееся, при большой погрешности нет смысла в большом количестве единиц счета. Поэтому производители подбирают этот параметр в соответствии с погрешностью измерения.

При оценке точности прибора следует обращать внимание и на количество единиц счета, и на погрешность, и на диапазон измеряемого параметра. Рассмотрим для примера два прибора:

1. Погрешность измерения тока: 2% ± 1 единица счета. Минимальный диапазон измерения тока: 0-600 мА. Количество единиц счета: 6000.

2. Погрешность измерения тока: 2% ± 1 единица счета. Минимальный диапазон измерения тока: 0-50 мА. Количество единиц счета: 6000.

На первый взгляд приборы похожи. Для оценки точности вычислим абсолютную погрешность в диапазоне 0-5 мА каждого прибора:

1. 2% от 600 — это 12 мА. 1 единица счета — это 600/6000 = 0,1 мА. Итого абсолютная погрешность — 12.1 мА.

2. 2% от 5 — это 100 мкА. 1 единица счета — это 5/6000 = 0,8 мкА. Итого абсолютная погрешность — 100,8 мкА.

Таким образом, в этом диапазоне второй прибор в 100 раз точнее первого. Именно по этой причине два прибора с одинаковой базовой погрешностью могут отличаться по цене на порядок.

Частота обновления экрана показывает, сколько раз в секунду на экране будет обновляться измеренное значение. Высокая частота (более 1) полезна для выявления «дребезжащего» сигнала, с кратковременными всплесками или, наоборот, падениями. Только следует иметь в виду, что если в измеряемом диапазоне погрешность намного больше одной единицы счета, «дребезг» может быть вызван погрешностью самого прибора.

Для тех, кому важна точность измерений, следует обратить внимание на приборы класса True RMS – корректно измерять параметры переменного тока несинусоидальной формы могут только такие мультиметры.

Подсветка экрана будет весьма кстати при слабом освещении. Электрошкафы и шкафы автоматики часто располагаются в темных углах и плохо освещенных помещениях, лампы подсветки в них есть не всегда, да и те, что есть, при диагностике и ремонте часто бывают обесточены. Подсветкой экрана мультиметра в этом случае просто необходима.

Функция hold предназначена для фиксации показания на экране. Эта функция может быть удобна, когда по каким-то причинам в процессе измерения экран не попадает в поле зрения. Тогда при измерении нажимается кнопка hold, а показания можно будет просмотреть позже.

Очень полезна функция автоматического определения диапазона измеряемой величины. Ошибка в ручном задании диапазона (например, выбор диапазона 0-200 мВ при напряжении в 100 В) может привести к поломке прибора. Наличие функции автоматического определения диапазона предотвратит опасную ситуацию и подберет диапазон, в котором измерение будет производиться с наибольшей точностью.

Некоторые приборы можно подключать к персональному компьютеру и, с помощью соответствующего ПО, сохранять результаты на компьютере для последующей обработки и анализа.

Варианты выбора

Для домашнего применения будет вполне достаточно недорогого мультиметра с возможностью «прозвонки» цепи и измерения напряжения, тока и сопротивления.

Для ремонта и настройки радиоэлектроники потребуется мультиметр с низкой погрешностью и возможностью измерять параметры электронных компонентов.

Если измеряемые вами параметры могут случайным образом меняться в большом диапазоне, или если вы просто не хотите каждый раз подбирать диапазон, выбирайте среди моделей с автоматическим определением диапазона.

Читайте также:  Сила тока текущего по проводнику равна 2 а какое количество теплоты

Если у вас нет желания вникать в цифры, а прибор нужен только для проверки цепей на замыкание/обрыв/наличие напряжения, выбирайте среди простых тестеров.

Если вам необходимо часто измерять силу тока в кабелях, находящихся под напряжением, наличие токовых клещей намного упростит эту задачу.

Источник

Какова единица измерения силы тока

26 октября 2019

Время на чтение:

Сила тока — скалярная величина, выведенная Андре-Мари Ампером и занесенная в международную измерительную систему. Более подробно о том, как называется единица тока, как правильно измерить электроэнергию и от чего она зависит далее.

Единица измерения силы тока

Это физическая и скалярная величина, которая равна заряду, прошедшему через определенное время на поверхность. Измеряется в амперах, что равно одному кулону, поделенному на секунду, в дополнение к теме, в каких единицах измеряют силу электрического тока. Ампер — единица измерения, названная в честь своего создателя — французского физика, математика и естествоиспытателя. Стоит указать, что именно он впервые представил миру понятие электротока и отметил его значение для общества.

Единица измерения

Формула

Это явление, изучаемое в электростатике, магнитостатике, электродинамики и электроцепи. Равно количеству заряда, поделенному на время, напряжению, поделенному на проводниковое сопротивление. Вычисляется по закону Ома для полной электроцепи. Для этого необходимо источник напряжения поделить на выражение сопротивления внешних сетевых элементов и внутреннего сопротивления источника напряжения. При этом значение электродвижущей силы источника напряжения может быть меньше или больше, чем сопротивление, если токовая энергия зависит от величины нагрузки или нет.

Обратите внимание! Стоит указать, что электроток может быть найдет через перемножение заряда, его концентрации, среднего напряжения и косинуса угла площади, если поверхность имеет плоскую форму. Также электроток может быть найдет через перемножение всех указанных ранее элементов и интеграла по поверхности.

Приборы для измерения силы тока

Прибором для измерения токовой силы называется амперметр, в дополнение к теме, чем измеряют ток. Бывает стрелочным, цифровым и электронным. Активно применяется в электролаборатории, автомобилестроении, точной науке и строительстве. По принципу действия бывает электромагнитным, магнитоэлектрическим, термоэлектронным, ферродинамическим, электродинамическим и цифровым. Измеряет как переменный, так и постоянный электроток.

Работает благодаря взаимодействию магнитного поля с подвижной катушкой или сердечником, который находится в корпусе. Пользоваться всеми типами очень просто. Все что нужно от пользователя, это внимательно изучить инструкцию и руководство к эксплуатации. Как правило, для начала измерения необходимо с помощью щупов прикоснуться к проводнику и нажать соответствующую кнопку. После на экране будет выведено значение в амперах. Стоит указать, что измеряет токовую силу также вольтметр, мультиметр и измерительная отвертка.

От чего зависит ток

Поскольку токовая сила является скалярной величиной, имеющей положительный и отрицательный заряд, то зависит она от мощности заряда, концентрации сосредоточенных в заряде частиц, скорости их движения и площади проводника. Стоит также указать, что зависит она от значения сопротивления с напряжением, величиной магнитного поля, числом катушечных витков, мощностью работы ротора, диаметром проводника и параметром генераторной установки.

Зависимости электротока от сопротивления и напряжения

Источники

Источником тока называется генератор, любой источник электрической энергии. Бывают механическими, тепловыми, световыми и химическими. К первым относятся газовые и паровые генераторы, турбогенераторы и механические преобразователи. Ко вторым относятся радиоизотопные термоэлектрические генераторы, а к третьим — солнечные батареи. К последним относятся гальванические солевые, щелочные или литиевые элементы, свинцово-кислотные, литий-ионные и никель-кадмиевые аккумуляторы.

Обратите внимание! Стоит указать, что источник электротока бывает идеальным и реальный. Первый — это двухполюсник, зажимы которого поддерживают электродвижущую постоянную силу. Второй же — двухполюсник, не имеющий постоянную силу из-за того, что зависит от внутреннего сопротивления. К реальному относится вторичная трансформаторная обмотка, катушка индуктивности, биполярный транзистор или генератор тока.

В целом, сила электротока — скалярная величина, измеряемая в амперах и равная одному кулону на секунду. Вычисляется при помощи выведенных формул, в частности по закону Ома, а также специальными измерительными приборами. Зависит от сопротивления, скорости магнитного потока и напряжения. Источниками выступают механические с тепловыми, световыми и химическими элементами, перечисленными выше.

Источник

Допустимый длительный ток: что это такое, особенности, как выбирается

Определение.

Допустимый длительный ток (continuous current-carrying capacity ampacity) (Iz) — это максимальное значение электрического тока, который проводник, устройство или аппарат способен проводить в продолжительном режиме без превышения его установившейся температуры определенного значения (определение согласно ГОСТ 30331.1-2013) [1].

Данный термин в некоторой нормативной документации некорректно называют «допустимой токовой нагрузкой проводника», «токопроводящей способностью проводника» или «номинальным током проводника». По сути эти 3 термина тождественны между собой, но корректно использовать именно термин «допустимый длительный ток проводника», так как он получил более широкое распространение.

Особенности.

Харечко Ю.В., проведя всесторонний анализ нормативной документации заключил следующее [2]:

« В национальной нормативной документации термин «допустимый длительный ток», как правило, используют в качестве характеристики проводников, посредством которой устанавливают максимальный электрический ток, который проводник способен проводить в продолжительном режиме (неделями, месяцами, годами), не перегреваясь при этом. Допустимый длительный ток проводника фактически является его номинальным током. »

« Сечение проводников, используемых в электроустановках зданий, всегда выбирают с учетом электрических токов, которые могут по ним протекать при нормальных условиях. Электрический ток, протекающий по любому проводнику, не должен превышать его допустимый длительный ток. При соблюдении этого условия установившаяся температура проводника не будет превышать предельно допустимую температуру, заданную нормативными документами. »

« В противном случае, если электрический ток, протекающий в проводнике, превышает его допустимый длительный ток, проводник будет перегреваться. Его изоляция будет подвержена ускоренному старению. При очень больших электрических токах проводник, разогретый до нескольких сотен градусов, может стать причиной пожара. Для исключения перегрева проводников в электроустановках зданий применяют специальную защиту, именуемую защитой от сверхтока, с помощью которой сокращают до безопасного значения продолжительность протекания по проводникам электрических токов, превышающих их допустимые длительные токи. »

В разделе 523 «Допустимые токовые нагрузки» 1 ГОСТ Р 50571.5.52-2011, который цитируется дальше, в частности, указано, что «В качестве допустимой токовой нагрузки для заданного периода времени при нормальных условиях эксплуатации принимается нагрузка, при которой достигается допустимая температура изоляции. Данные для разных типов изоляции приведены в таблице 52.1. Значение тока должно быть выбрано в соответствии с 523.2 или определено в соответствии с 523.3».

Примечание 1:

« В ГОСТ Р 50571.5.52-2011 вместо словосочетания «допустимая токовая нагрузка» следовало использовать термин «допустимый длительный ток проводника». Поэтому раздел 523 должен быть назван иначе: «Допустимые длительные токи». »

Первое требование в стандарте МЭК 60364‑5‑52 сформулировано иначе: «Ток, проводимый любым проводником для длительного периода при нормальном оперировании, должен быть таким, чтобы не была превышена предельная температура изоляции.»

То есть в требованиях международного стандарта упомянут ток, протекающий по проводнику, измеряемый в амперах, а не нагрузка на проводник, которую измеряют в киловаттах.

В таблице 52.1 ГОСТ Р 50571.5.52-2011 приведены максимально допустимые температуры, которые могут иметь проводники с разной изоляцией.

Извлечения из таблицы 52.1 «Максимальные рабочие температуры для типов изоляции» ГОСТ Р 50571.5.52-2011:

Тип изоляции Максимальная температура, °С
Термопласт (PVC 1 ) 70 проводника
Реактопласт (XLPE 2 или резина EPR 3 ) 90 проводника
Минеральная (оболочка термопласт (PVC), или голая 4 , доступная прикосновению) 70 оболочки
Минеральная (голая, не доступная прикосновению и не в контакте с горючими веществами) 105 оболочки

Пояснения к таблице:

1) PVC – поливинилхлорид (ПВХ).
2) Cross-linked polyethylene – сшитый полиэтилен.
3) Ethylene-propylene rubber – этиленпропиленовая резина.
4) В стандарте МЭК 60364-5-52 указано иначе: Минеральная без оболочки.

Как выбирается допустимый длительный ток проводника?

Для изолированных проводников и кабелей без брони требования п. 523.2 ГОСТ Р 50571.5.52-2011 предписывают выбирать допустимые длительные токи проводников по таблицам приложения В:

  • в таблице В.52.2 которого приведены допустимые длительные токи проводников при разных вариантах монтажа электропроводки, имеющей два нагруженных медных или алюминиевых проводника с изоляций из поливинилхлорида;
  • в таблице В.52.4 – три нагруженных проводника.
  • В таблицах В.52.3 и В.52.5 приложения В указаны допустимые длительные токи проводников соответственно для двух и трех нагруженных медных и алюминиевых проводников с изоляцией из сшитого полиэтилена и этиленпропиленовой резины.
Читайте также:  Схема сварочного инвертора переменного тока

В приложении В имеются также другие таблицы.

Харечко Ю.В. при этом дополняет [2]:

« При этом два нагруженных проводника могут быть в составе двухпроводной электрической цепи переменного тока, выполненной фазным и нейтральным проводниками или двумя фазными проводниками, а также двухпроводной электрической цепи постоянного тока, выполненной полюсным и средним проводниками или двумя полюсными проводниками. Три нагруженных проводника могут быть в трех- или четырехпроводной электрической цепи переменного тока, выполненной соответственно тремя фазными проводниками или тремя фазными и нейтральным проводниками. В последнем случае током, протекающим по нейтральному проводнику, пренебрегают. »

Пункт 523.3 ГОСТ Р 50571.5.52-2011 предусматривает следующие альтернативные способы определения значений допустимых длительных токов проводников: или в соответствии с требованиями комплекса МЭК 60287 «Электрические кабели. Вычисление номинального тока», в состав которого входит 8 стандартов, или в результате испытаний, или вычислением по методике, утвержденной в установленном порядке. Причем там, где это необходимо, должно быть уделено внимание характеристике нагрузки проложенных в земле кабелей с учетом теплового сопротивления почвы.

Источник



Измерение тока. Виды и приборы. Принцип измерений и особенности

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Измерение тока рекомендуется делать в следующих случаях:
  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

Ampermetry

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Multimetry

Порядок измерения силы тока мультиметром:
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

Izmerenie toka klemy

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Izmeritelnye kleshchi

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.

Izmerenie toka skhemy

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Источник