Меню

Увеличение выходного тока схема

Как повысить силу тока, не изменяя напряжения?

Николай ПетровичАвтор: Николай Петрович

Из статьи вы узнаете как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Читайте также:  Как рассчитать ток сборных шин

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Итоги

Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.

Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.

Источник

Увеличение выходного тока схема

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Увеличение выходного тока блока питания

    У многих радиолюбителей частенько возникает необходимость в увеличении выходного тока импульсного блока питания. Как правило источники питания для ноутбуков, принтера, всевозможные адаптеры питания мониторов и так далее выполнены по однотактной обратноходовой схеме, и по строению ничем не отличаются друг от друга. Они отличаются комплектацией, шим контроллером, но схемотехника одна и та же, однотактный шим контроллер, чаще всего из семейства UC38хх, высоковольтный полевой транзистор, который и качает трансформатор, а на выходе однополупериодный выпрямитель в виде одного или сдвоенного диода шоттки, после него дроссель, накопительные конденсаторы и система обратной связи по напряжению. Благодаря обратной связи выходное напряжение стабилизировано и строго держится на заданном уровне. Обратную связь обычно строят на базе оптрона и источника опорного напряжения tl431, изменение сопротивления резисторов делителя в его обвязке, приводит к изменению выходного напряжения.

    Рассмотрим конкретный пример доработки 19В адаптера, который обеспечивает выходной ток 5А, в 5В адаптер с током 20А.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Имеющийся блок питания имеет мощность около 120 ватт, мы собираемся снизить выходное напряжение до 5В, но взамен увеличить выходной ток до 20А. Расчетная мощность получиться около 100Вт.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Входную высоковольтную часть блока мы трогать не будем, все переделки коснуться только выходной части и самого трансформатора.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Выпаиваем выходной дроссель и импульсный трансформатор.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Умощняем диодный выпрямитель заменой диода на более мощный или впаиваем дополнительный диод.

    Трансформатор, самая важная и ответственная часть. Снимаем скотч, греем сердечник паяльником со всех сторон в течении 15-20-и минут для ослабления клея и аккуратно вынимаем половинки сердечника, и оставляем все это дело минут на 10 для остывания. Далее убираем желтый скотч и разматываем первую обмотку запоминая направление намотки или просто сделайте пару фоток до разборки, в случае чего они вам помогут.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Второй конец провода я не отпаял со штырька, далее разматываем вторую обмотку, второй конец провода опять же желательно не отпаивать. После этого нам станет доступна вторичная обмотка, эту обмотку полностью удаляем. Она состоит из 4-х витков, намотана жгутом из 8-и проводов, диаметр каждого 0,55мм.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Новая вторичная обмотка, которую мы намотаем содержит всего полтора витка, так, как нам нужно всего 5 вольт. Мотать будем тем же способом, провод я взял с диаметром 0,35мм, но вот количество жил аж 40-штук, это гораздо больше, чем нужно, ну в прочем сами можете сравнить с заводской обмоткой.

    Увеличение выходного тока блока питанияУвеличение выходного тока блока питания

    Теперь все обмотки мотаем в том же порядке. Опять же укажу, обязательно соблюдайте направление намотки всех обмоток иначе ничего работать не будет.

    Жилы вторичной обмотки желательно залудить еще до начала намотки, для удобства каждый конец обмотки разбил на две группы, чтобы на плате не сверлить гигантские отверстия для установки.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    Увеличение выходного тока блока питания

    После установки трансформатора находим микросхему TL431, как ранее указал именно она задает выходное напряжения.

    Увеличение выходного тока блока питания Увеличение выходного тока блока питания

    В ее обвязке находим делитель. В моем случае один из резисторов этого делителя в виде пары SMD резисторов включенных последовательно, второй резистор делителя выведен ближе к выходу. В моем случае его сопротивление 20кОм, выпаиваем этот резистор и заменяем его подстроечным, на 10 кОм.

    Подключаем блок питания в сеть обязательно через страховочную сетевую лампу с мощностью в 40-60 ватт. На выход блока питания подключаем мультиметр и небольшую нагрузку, в моем случае это пара 5-и ваттных лам накаливания на 28Вольт. Вращаем подстроечный резистор до получения желаемого напряжение на выходе. Далее выпаиваем подстроечный резистор, замеряем его сопротивление и заменяем на постоянный, либо оставляем его.

    Усиливаем дорожки по вторичной цепи, желательно их дополнительно армировать проводом, токи тут уже будут в два раза большее, чем раньше.

    Читайте также:  Усилитель тока с 12 вольт до 220

    Увеличение выходного тока блока питания

    Осталось собрать плату в корпус и протестировать.

    Источник

    Увеличение выходного напряжения и максимального тока при помощи последовательного соединения изолированных преобразователей семейства μModule

    Изолированные преобразователи μModule компании Linear Technology представляют собой компактные решения для систем питания с изолированными контурами заземления. Устройства используют архитектуру обратноходовых преобразователей (Flyback Converter), в которой максимальный выходной ток зависит как от входного, так и от выходного напряжения. Хотя собственный диапазон выходного напряжения преобразователей μModule ограничен максимальным значением в 12 В, существует решение, позволяющее увеличить не только выходное напряжение, но и выходной ток вторичных источников питания, выполненных на их основе. Столь простое решение предусматривает последовательное включение вторичных цепей двух или более изолированных преобразователей μModule.



    Рис. 2. Два преобразователя μModule типа LTM8057 с выходами,
    соединенные последовательно и предназначенные для обеспечения выходного напряжения 10 В с максимальным током 300 мА и входным напряжением 20 В

    Для того чтобы продемонстрировать такой подход к дизайну схемотехнического решения, возьмем в качестве примера вариант схемы на модулях LTM8057 и LTM8058, которые отвечают требованиям стандарта UL60950 и имеют электрическую прочность изоляции между входом и выходом не менее 2 кВ AC. Этот же подход может быть применен и к преобразователям LTM8046, LTM8047 и LTM8048. Предположим, что при входном напряжении 20 В нам не-обходимо обеспечить выходное номинальное напряжение равным 10 В при токе нагрузки до 300 мА. Согласно графику, приведенному на рис. 1 и описывающему зависимость максимального выходного тока преобразователя LTM8057 от уровней его входного и выходного напряжений, мы видим, что сам по себе преобразователь LTM8057 является недостаточным для выполнения необходимых нам требований при заданных условиях в части входного и выходного напряжений.

    Тем не менее при входном напряжении, равном 20 В, преобразователь LTM8057 обеспечивает выходной ток на уровне 300 мА, но лишь при выходном напряжении 5 В. Таким образом, решение очевидно, поскольку выходное напряжение преобразователя изолировано от входного, то для достижения заданного выходного напряжения, равного 10 В при токе 300 мА, выходы двух преобразователей типа LTM8057 с предустановкой выходного напряжения в 5 В могут быть просто соединены последовательно (рис. 2).

    Решение, приведенное на рис. 2, можно использовать и для увеличения диапазона выходного напряжения, когда требуется выходное напряжение выше, чем максимальное в 12 В. Этого удается достичь, устанавливая значение регулирующих выходное напряжение резисторов цепи обратной связи таким образом, чтобы обеспечить, например, номинальное выходное напряжение, равное 7,5 В. При последовательном соединении двух таких преобразователей их суммарное выходное напряжение возрастет до 15 В. Максимальный выходной ток для данного варианта схемотехнического решения с выходным напряжением 15 В будет тот же самый, что и для единичного устройства, выполненного на базе преобразователя напряжения μModule, с выходным напряжением 7,5 В (рис. 3).


    Рис. 3. Два преобразователя μModule типа LTM8057 с последовательно соединенными выходами
    для варианта схемы с выходным током более 160 мА при выходном напряжени
    15 В и входном напряжении 12 В


    Рис. 4. Два преобразователя μModule типа LTM8058,
    включенные последовательно через V OUT2 ,
    для варианта с выходным напряжением в 10 В

    Схема, приведенная на рис. 2, позволяет реализовать еще один – третий из возможных вариантов ее использования, а именно сформировать двуполярное выходное напряжение с общим заземлением. Точка возврата тока (return node), на схемах обозначенная как RTN или более привычная для нас под названием «общий провод», делается общей для обоих выходов с подключением в средней точке (имеется в виду общая точка подключения конденсаторов С2 и С5. – Прим. переводчика). При таком включении схема на рис. 2 будет иметь выходы с напряжениями +5 и –5 В с общим контуром заземления во вторичной цепи. При необходимости каждый выход схемы можно настроить на свою величину выходного напряжения, поскольку выходные напряжения для каждого преобразователя устанавливаются независимо.

    Возможности изолированных преобразователей μModule расширяются без какого-либо ухудшения их выходных шумовых характеристик, выполняется это добавлением одного или более дополнительных изолированных преобразователей с последовательным включением их выходных цепей.

    Малый уровень собственных шумов, который является неоспоримым преимуществом преобразователя LTM8058 со встроенным компенсационным стабилизатором напряжения и малым собственным падением напряжения, так называемым LDO-стабилизатором (англ. LDO – Low Drop Out), может сохраняться и при последовательно соединенных выходах нескольких преобразователей. На рис. 4 показана схема для двух преобразователей типа LTM8058 с использованием такого включения через выход Vout2, то есть относительно выходов внутреннего LDO-стабилизатора, соединенных последовательно для получения выходного напряжения в 10 В. На рис. 5 показан выходной спектр шумов LTM8058 под нагрузкой 100 мА при выходном напряжении 10 В с использованием выходов LDO-стабилизаторов напряжения, соединенных последовательно (рис. 4, дано схематично), а также вариант с применением прямых вы-ходов непосредственно обратноходового преобразователя (без стабилизатора), также соединенных последовательно.

    Комментарий специалиста

    Александр Федоров, инженер по внедрению холдинга PT Electronics,
    aleksandr.fedorov@ptelectronics.ru

    В данной статье показан весьма простой и эффективный способ масштабирования и расширения возможностей DC/DC-узла. Ситуация разобрана на примере изолированных DC/DC-модулей от Linear Technology, которые благодаря продуманной топологии позволяют наращивать выходной ток и (или) напряжение самым прозаичным методом.


    Рис. 5. Спектр шумов двух преобразователей типа LTM8058 с выходным напряжением 10 В при токе нагрузки 100 мА в варианте включения: а) с последовательным соединением относительно выходов внутреннего компенсационного стабилизатора; б) с использованием прямых выходов непосредственно обратноходового преобразователя

    Преобразователи μModule компании Linear Technology обеспечивают простые и компактные решения для изолированных источников питания с регулируемым выходным напряжением. Представленные здесь решения на базе преобразователей LTM8057 и LTM8058 с успехом демонстрируют, что возможности отдельных преобразователей типа μModule в части их выходных каскадов могут быть легко увеличены путем добавления одного или более таких изолированных преобразователей с их последовательным включением по выходам, при этом они сохраняют свои выходные шумовые характеристики на прежнем уровне.

    Авторы статьи: Хесус Росалес (Jesus Rosales)
    Вилли Чан (Willie Chan)
    Перевод: Владимир Рентюк
    Опубликовано в журнале «Вестник Электроники» №4 2014

    Источник

    

    Схемы повышающих импульсных преобразователей напряжения DC-DC.
    Бестрансформаторные преобразователи с диодно-конденсаторными умножителями,
    импульсные повышающие преобразователи с индуктивными накопителями энергии.

    Казалось бы, всё просто как бублик: слепили из простых и доступных ингредиентов генератор, присовокупили к нему повышающий трансформатор, мостик, всякие там дела. Вот, собственно, и всё — дело сделано, сказка сказана, можно закрывать тему.

    — Но мы же не можем прямо тут. У нас же есть какие-то морально-этические принципы.
    — Так сегодня ж понедельник!
    — Понедельник, конечно, но не до такой же степени. Поэтому говорить будем много, нудно и обстоя- тельно.

    А обсудим мы на этой странице повышающие преобразователи напряжения, не омрачённые такими редко любимыми в радиолюбительских кругах моточными изделиями, как силовые (или импульсные) трансформаторы.

    Начнём с устройств, выполненных на цепях диодно-конденсаторных умножителей напряжения.


    Рис.1

    Простой преобразователь напряжения на одной К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме, приведённой на Рис.1. Преобразователь содержит задающий генератор, реализованный на первых двух инверторах КМОП микросхемы DD1, и буферного выходного каскада, предназначенного для увеличения выходного тока преобразователя и выполненного на включённых параллельно оставшихся элементов ИМС.
    Диоды VD1, VD2, а так же конденсаторы С2, С3 образуют цепь удвоения напряжения.
    При указанных на схеме номиналах элементов — генератор импульсов, работает на частоте 10 кГц. При напряжении питания 10В — выходное напряжение составляет 17В при токе нагрузки 5мА, 16В при токе 10мА, 14,5В при токе 15мА.
    Значение КПД и величину выходного напряжения преобразователя можно увеличить за счёт использования в выпрямителе-умножителе напряжения германиевых диодов, либо диодов Шоттки.
    А для получения отрицательного выходного напряжения — элементы удвоителя напряжения следует включить в соответствии с правой частью рисунка Рис.1.

    Для увеличения мощности повышающих преобразователей между генератором и умножителем вводятся дополнительные биполярные или полевые транзисторы с максимальным допустимым током, превышающим ток нагрузки.

    Устройство, представленное на Рис.2, образуют задающий генератор, собранный на логических элементах DD1.1 и DD1.2, буферные ступени DD1.3, DD1.4, усилители тока VT1, VT2 и выпрямитель-удвоитель напряжения на диодах VD1, VD2 и конденсаторах С2, СЗ.
    При питании преобразователя от источника постоянного тока напряжением 12 В его выходное напряжение при токе нагрузки 30 мА будет около 22 В (напряжение пульсаций — 18 мВ).
    При токе нагрузки 100 мА выходное напряжение уменьшается до 21 В, а при 250 мА — до 19,5 В.
    Без нагрузки преобразователь потребляет от источника питания ток не более 2 мА.
    Транзисторы VT1 и VT2 преобразователя могут быть любыми из указанных на схеме серий, а также ГТ402В или ГТ402Г, ГТ404В или ГТ404Г. С германиевыми транзисторами выходное напряжение преобразователя будет больше примерно на 1 В.

    Для получения больших выходных напряжений применяются схемы преобразователей напряжения с многокаскадными умножителями.


    Рис.3

    На Рис.3 приведена схема экономичного преобразователя напряжения для питания варикапов, опубликованная в журнале Радио №10, 1984, И. Нечаевым.
    «Преобразователь не содержит намоточных деталей, экономичен и прост в налаживании. Устройство состоит из генератора прямоугольных импульсов на микросхеме DD1, умножителя напряжения на диодах VD1-VD6 и конденсаторах СЗ-С8, параметрического стабилизатора напряжения на транзисторах VT1-VT3.
    В качестве стабилитронов используются эмиттерные переходы транзисторов. Режим стабилизации наступает при токе 5. 10мкА.
    Помимо указанных на схеме, в преобразователе можно использовать микросхемы К176ЛЕ5 и К176ЛА9, транзисторы КТ315, КТ316 с любым буквенным индексом, диоды Д9А, Д9В, Д9Ж. Конденсаторы С1-С7 — КЛС или KM, C8 — К50-6 или К50-3, резисторы МЛТ или ВС.
    Налаживание преобразователя сводится к подбору транзисторов VT1 — VT3 с требуемым напряжением стабилизации.
    При изменении напряжения питания приёмника от 6,5 до 9В потребляемый преобразователем ток увеличивается с 0,8 до 2,2мА, а выходное напряжение — не более чем на 8. 10мВ.
    При необходимости выходное напряжение преобразователя можно повысить, увеличив число звеньев умножителя напряжения и число транзисторов в стабилизаторе».

    В последнее время для преобразования напряжения всё чаще применяют импульсные преобразователи с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.
    Как это работает?


    Рис.4

    На рисунке Рис.4 (слева) изображён импульсный повышающий преобразователь напряжения, способный повышать выходное напряжение от напряжения источника питания до величины в десятки раз превышающей его.

    При замыкании ключа, выполненного на транзисторе Т, через цепь: источник питания — индуктивность — замкнутый ключ начинает протекать ток. При этом, в связи с явлением самоиндукции, ток через индуктивность не может измениться моментально, так как в это время идёт постепенный запас энергии (ЭДС) в магнитном поле катушки.

    При размыкании ключа — ток начинает течь по другому контуру: источник питания-индуктивность-диод-нагрузка. Поскольку источник питания и катушка в этой цепи соединены последовательно, то их ЭДС складываются. Таким образом происходит повышение напряжения.

    Величина выходного напряжения подобных преобразователей малопредсказуема и зависит от нескольких факторов: сопротивления нагрузки, добротности катушки, и энергии, которая успела запастись в ней за время замыкания ключа. Именно поэтому напряжение в цепи без нагрузки может достигать значительных величин, порой приводящих к пробою ключевого транзистора.

    Так как же регулировать напряжение на выходе таких преобразователей?
    Очень просто — запасать в дросселе ровно столько энергии, сколько необходимо для того, чтобы создать необходимое напряжение на нагрузке. Производится это посредством регулировки длительности импульсов открывающих транзистор (временем в течении которого открыт транзистор).

    Уровень выходного напряжения преобразователя описывается формулой Uвых = K×Uвх/(1-D), где
    D — это величина, обратная скважности, и равная отношению периода времени, когда ключ открыт, к общему периоду импульсного сигнала, управляющего ключевым транзистором, а
    К — коэффициент, прямо пропорциональный сопротивлению нагрузки и обратно пропорциональный сопротивлению открытого ключа, а также сопротивлению потерь катушки индуктивности.
    У данного типа преобразователей полярность выходного напряжения, совпадает с полярностью входного.

    На рисунке Рис.4 (справа) приведена упрощённая схема инвертирующего преобразователя напряжения, имеющего полезное свойство — работать как в режиме понижения напряжения, так и в режиме повышения.
    Полярность его выходного напряжения противоположна полярности входного.

    Так же как и в предыдущем случае, во время замыкания ключа Т происходит процесс накопления энергии катушкой индуктивности. Диод Д препятствует попаданию напряжению от источника питания в нагрузку.
    Когда ключ закрывается, энергия индуктивности начинает перетекать в нагрузку. При этом ЭДС самоиндукции, направлена таким образом, что на концах катушки формируется полярность, противоположная первичному источнику питания. Т. е. на верхнем конце обмотки катушки формируется отрицательный потенциал, на противоположном конце — положительный.

    Уровень выходного напряжения равен: Uвых = K×Uвх×D/(1-D).

    С теорией завязываем, резко переходим к схемам электрическим принципиальным повышающих преобразователей напряжения с индуктивными накопителями на борту.


    Рис.5

    На Рис.5 приведена очень простая и красивая схема преобразователя напряжения 1,5 в 15 вольт, содержащая всего 2 транзистора, выполняющих как функцию генератора сигнала, управляющего ключевым транзистором, так и самого ключевого транзистора.
    Вот что пишет автор конструкции, приведённой в зарубежном издании.

    «В качестве источника используется элемент питания напряжением 1,5 В, а на выходе схемы получается напряжение 15 В. Схема ещё хороша тем, что очень проста для повторения и не имеет дефицитных деталей.
    Рассмотрим принцип работы. Итак, при замыкании тумблера SA1 на резисторе R1 возникает падение напряжения. Как следствие, через базу транзистора VT1 потечёт ток и оба транзистора (VT1, VT2) будут находится в открытом состоянии. В начальный момент времени, на коллекторе VT2 будет практически нулевое напряжение и через него и катушку L1 потечет нарастающий ток. Этот ток будет непрерывно увеличиваться пока транзистор VT2 не перейдет в режим насыщения. Следствием это будет увеличение напряжения на коллекторе транзистора VT2, что неизменно приведет к возрастанию напряжения на резисторе R2. В результате, транзистор VT1 закроется, после чего закроется и второй транзистор VT2.
    После того, как ток прекратит движение через катушку L1, на коллекторе транзистора VT2 образуется большое положительного напряжения, которое двигаясь через диод Шоттки VD1, будет заряжать конденсатор C1. Стабилитрон VD2 в схеме преобразователя напряжения играет роль ограничителя зарядного напряжения на конденсаторе C1 и поддерживает его на уровне 15 В.
    После того, как магнитное поле катушки L1 исчезает, напряжение на транзистора VT2 падает до уровня источника питания, т. е. до 1,5 Вольт. После чего оба транзистора переходят в открытое состояние, а через катушку L1 снова потечет нарастающий ток.
    Частота работы устройства около 10 кГц. При исправных деталях и правильном монтаже, простой преобразователь напряжения начинает работать сразу. Допускается замена деталей очень близких по характеристикам».

    Много разнообразных преобразователей напряжения реализуется на базе интегрального таймера NE555.


    Рис.6

    Схема одного из вариантов такого преобразователя приведена на Рис.6. Для получения высоковольтных импульсов он использует накопительный дроссель.
    «На таймере DA1 собран генератор импульсов с частотой повторения около 40 кГц (она определяется сопротивлением резисторов R1, R2 и емкостью конденсатора С1). Эти импульсы поступают на транзистор VT1, работающий в режиме переключения. Когда он открыт, в катушке индуктивности L1 накапливается энергия за счет протекающего через VTI тока. Когда транзистор закрывается, на катушке L1 возникает импульс напряжения, амплитуда которого в несколько раз превышает напряжение питания (в авторской конструкции она была около 80 В). Эти импульсы напряжения выпрямляются диодом VD1, а выпрямленное напряжение фильтруется, а затем стабилизируется стабилитроном VD2.
    Транзистор VT1 желательно подобрать из числа предназначенных для использования в переключающих схемах. Он, в частности, должен иметь высокое допустимое напряжение коллектор-эмиттер (не ниже 100 В). Высокое обратное допустимое напряжение должен иметь и диод VD1.
    Стабилитрон VD2 — малой мощности на требуемое выходное напряжение (в авторской конструкции — на 30 В). Таймер DA1 имеет аналог отечественного производства — КР1006ВИ1. Подробной информации о катушке индуктивности в первоисточнике нет. Отмечается лишь, что она выполнена на незамкнутом броневом магнитопроводе из материала с высокой начальной магнитной проницаемостью медным проводом диаметром 0,1 мм.
    При налаживании конструкции может возникнуть необходимость подобрать резистор R3 по наибольшему выпрямленному напряжению».


    Рис.7

    «Ещё одна схема очень простого преобразователя постоянного напряжения с минимумом элементов, обеспечивающего несколько миллиампер тока напряжением 400. 425В при потребляемом токе 80. 90 мА от источника 9 В, приведена на Рис.7.
    На таймере NE555 выполнен мультивибратор на частоту 14 кГц. КПД устройства сильно зависит от добротности катушки индуктивностью 1 мГн.
    Дроссель имеет индуктивность 1000мкГн. Толщина провода не столь важна, поскольку выходной ток схемы ничтожный. Такое устройство может быть пригодно для тех приборов, где нужно получить повышенное напряжение, но размеры ограничены».

    Достаточно часто приходится видеть устройства преобразователей на NE555 со встроенной схемой стабилизации выходного напряжения. Однако, кто интересуется, тот знает, что импульсные преобразователи со стабилизацией гораздо лучше работают на недорогих микросхемах серии UC384x, которые представляют из себя широтно-импульсные контроллеры и специально спроектированы для работы в преобразователях постоянного напряжения. Схема такого устройства приведена на Рис.8.


    Рис.8

    L1 намотана на кольце из порошкового железа d=24мм и содержит 24 витка провода диаметром 1мм. Выходная частота работы микросхемы при указанных номиналах элементов работы — 75-80 кГц.

    Устройство было изготовлено и довольно подробно протестировано в сравнении с аналогичным преобразователем на микросхеме NE555 уважаемым Александром Сорокиным на странице форума https://www.drive2.ru/c/470856784697885156/.
    Вот что пишет автор:

    «Стабилизация выходного напряжения на микросхеме UC3845 работает прекрасно во всем диапазоне нагрузок. Напряжение холостого хода в пределах нормы (19.2 вольта для ноутбука), при 10Вт на выходе напряжение 18,94в, при 85Вт 18,8в т.е. просадка всего 0,1в и это прекрасно».

    Ну и конечно не следует обходить вниманием специализированные микросхемы, представляющие собой практически готовые повышающие DC-DC преобразователи. Примером такой ИМС является TL499A (Рис.9).


    Рис.9

    С помощью этого импульсного источника питания можно получить напряжение от 1,5 до 15V при выходном токе до 50мА, для питания портативной аппаратуры от источника напряжением ЗV (два элемента «АА» или один литиевый элемент).
    В основе схемы DC/DC конвертор на микросхеме TL499A. У микросхемы есть два входа, в данном случае используется только один — вывод 3, для подачи входного напряжения с целью его повышения.
    Кстати, это напряжение не обязательно должно быть ЗV, может быть и 5V, а может быть и 1,5V (при работе от одного гальванического элемента), потому что минимальное входное напряжение микросхемы 1,1V, а максимальное 10V. При этом выходное напряжение поддерживается стабильным.
    Установка и стабилизация выходного напряжения происходит при помощи компаратора (вывод 2), наблюдающего за выходным напряжением, которое поступает на него через делитель на резисторах R2 и R3. Подстроечным резистором R2 выставляется уровень выходного напряжения в диапазоне от 1,5 до 15V.

    Источник