Меню

Ток в цепи направлен от потенциала

РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛОВ И ТОКА В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Для того чтобы разобраться в прохождении тока по электриче­ским цепям, надо представить, как распределяются в ней электриче­ские потенциалы. Электрический ток проходит всегда от точек цепи, находящихся под большим потенциалом, к точкам, находящимся под меньшим потенциалом. Если какая-либо точка цепи соединена с зем­лей, то потенциал ее принимается равным нулю; в этом случае потенциалы других точек цепи будут равны напряжениям, действующим между этими точками и землей.

Рассмотрим этот вопрос на нескольких конкретных примерах. На рис. 27, а показано распределение потенциалов в последовательной электрической цепи, находящейся под напряжением, при условии, что r1 = r2 = r3. Точка А имеет наибольший положительный потенциал φА, так как она соединена с положительным полюсом источника (сам источник на схеме отсутствует — показаны лишь провода сети, соединяющей его с точками А и Г). Потенциал φБ в точке Б будет меньше, чем в точке А, следовательно, на участке А Б ток идет от точки А к точке Б. Разность потенциалов между точками А и Б рав­на падению напряжения U1 = Ir1в резисторе с сопротивлением r1. Это падение напряжения возрастает постепенно по мере перехода от точки А к точке Б, поэтому вдоль резистора с сопротивлением r1 потенциал также уменьшается постепенно. В точке В потенциал равен нулю. Разность потенциалов между точками Б и В равна падению на­пряжения U2 = Ir2 в резисторе с сопротивлением r2. Точка Г будет иметь отрицательный потенциал по отношению к точке В (она соеди­нена с отрицательным полюсом источника), поэтому ток I идет от точ­ки В к точке Г. Следует отметить, что при заземлении одной точки элек­трической цепи распределение токов в ней не изменяется, так как при этом не образуется никаких новых ветвей, по которым могли бы проте­кать токи. Если заземлить две или большее число точек цепи, имеющих разные потенциалы, то через землю образуются дополнительные токопроводящие ветви и распределение тока в цепи меняется.

На рис. 27, б показано распределение потенциалов вдоль последо­вательной цепи при заземлении точки Г у одного из полюсов источ­ника питания. Как видно из графика, потенциал различных точек цепи по мере приближения к заземленной точке падает, т. е. умень­шается напряжение, действующее между этими точками и землей. По этой причине обмотки возбуждения тяговых двигателей и вспомога­тельных машин, в которых при резких изменениях тока могут возни­кать большие перенапряжения, стараются включать в силовую цепь электроподвижного состава ближе к «земле» (за обмоткой якоря). В этом случае на изоляцию этих обмоток будет действовать меньшее на­пряжение, чем если бы они были включены под более высоким потенциалом (ближе к контактной сети в электровозах постоянного тока или к незаземленному полюсу выпрямительной установки в электро­возах переменного тока). Точно так же точки электрической цепи, находящиеся под более высоким потенциалом, являются более опас­ными для человека, соприкасающегося с токоведущими частями элек­трических установок. При этом он попадает под более высокое напря­жение по отношению к «земле».

На рис. 28, а показано распределение потенциалов в последова­тельной цепи при ее обрыве у точки В. Все точки цепи от точки А до места обрыва будут иметь потенциал точки А (по цепи не идет ток и на резисторах r1, r2 и r3 нет падения напряжения), а от места обрыва до точки Г — нулевой потенциал. Следовательно, соприкосновение че­ловека с точкой В будет в этом случае также опасно, как и с точкой А; точка же Д не будет находиться под напряжением. Рассмотренный пример наглядно показывает, что некоторые точки электрических це­пей, которые при нормальных условиях заземлены, могут при обры­ве цепи оказаться под высоким напряжением.

На рис. 28, б показано распределение токов в последовательной цепи с двумя источниками, имеющими э. д. с. Е1 и E2 параллельно которым включены резисторы с одинаковыми сопротивлениями r1 = r2. При равенстве э. д. с. Е1 и Е2 разности потенциалов между точками БВ и ВГ (т. е. напряжения UБВ и UВГ) будут равны, поэтому по резисторам будут, протекать одинаковые токи: I1 = I2. Однако, если э. д. с. Е1 по какой-либо причине увеличится, то увеличится потенциал φБ точки Б и напряжение UБB станет больше напряжения U. Ток I1 возрастет и станет больше, чем I2. Если увеличится э. д. с. Е2, то возрастет разность потенциалов между точками В и Г, при этом напряжение UВГ станет больше UБВ, а ток I2 больше I1.

На рис. 29 показано распределение токов в цепи с двумя параллель­но соединенными источниками. При Е1 = Е2 и r1 = r2 по обеим парал­лельным ветвям протекают одинаковые токи I1 и I2; потенциалы точек Б и В одинаковы (напряжение между точками Б и В равно нулю) и через резистор r ток протекать не будет. Если э. д. с. Е1 станет боль­ше Е2, потенциал точки Б увеличится. При этом уменьшится разность потенциалов между точками А и Б, а следовательно, и ток I1. Одно­временно между точками Б и В появится разность потенциалов и по резистору r начнет протекать ток I от точки Б к точке В. При возра­стании э. д. с. Е2 до значения, большего э. д. с. Е1 потенциал точки В станет больше потенциала точки Б, и ток I будет проходить по рези­стору r от точки В к точке Б (см. штриховую стрелку). Если точки Б и В замкнуть не через резистор, а накоротко, то потенциалы точек Б и В станут равными. Такое соединение называется уравнительным. Рассмотрим прохождение тока по всей цепи, когда Е1 > Е2. Наи­больший положительный потенциал имеет точка А; поэтому от этой точки к точкам Б и В текуттоки I1 и I2. Точки Г и В имеют меньший потенциал, чем точка Б, следовательно, от точки Б к точкам В и Г текут токи I и I3. От точки В ток не может идти к точке А, так как она находится под более высоким потенциалом, поэтому от точки В ток I4 идет к точке Г.

Таким способом по распределению потенциалов между отдель­ными точками электрической цепи определяют прохождение тока по сложным электрическим цепям.

Источник

Сила тока. Электродвижущая сила. Разность потенциалов

Электрическим током называют упорядоченное движение заряженных частиц (тел). За направление движение электрического тока условно принимают направление движения положительных зарядов. Проходящий через какую-то поверхность электрический ток характеризуется силой тока I. Сила тока является скалярной величиной, численно равная количеству электричества, проходящего через площадь S за единицу времени:

Сила тока формула

Если за любые равные промежутки времени через любое сечение проводника проходит одинаковое количество электричества с неизменным направлением зарядов, то такой ток называется постоянным:

Постоянный ток формула

Сила тока в Международной системе единиц (СИ) является основной и носит название Ампер. Из уравнения (1а) следует определение единицы заряда:

Определение единицы заряда

В системе СГС сила тока измеряется в СГСI, согласно (1а) получим:

Сила тока в системе СГС

Распределение электрического тока по сечению проводника характеризуют плотностью тока, которую можно выразить формулой:

Плотность тока формула

В случае постоянного тока его плотность будет одинакова и равна:

Плотность постоянного тока формула

Плотность тока j является векторной величиной, направленной вдоль тока и численно равная количеству электричества, протекающему через единицу площади, ориентированной перпендикулярно направлению протекания тока, за единицу времени, в системе СИ плотность тока измеряют в А/м 2 .

Важно отметить, что различают несколько видов электрического тока. Предположим, что в пространстве перемещается какое-то заряженное макроскопическое тело (шар, например). Поскольку вместе с этим телом будут перемещаться и заряды, то возникнет направленное движение электрических зарядов – электрический ток. Электрический ток, связанный с движением заряженных макроскопических тел называют конвекционным.

Если огромное количество заряженных частиц упорядоченно перемещаются внутри какого-нибудь тела вследствие того, что в нем создано электрическое поле, то данное явление будет носить название ток проводимости. Для его получения необходимо наличие источника тока и замкнутой цепи. Вектор напряженности поля Е имеет направление от положительного заряда к отрицательному. Отсюда следует, что находящиеся внутри проводника отрицательные заряженные частицы будут двигаться против поля, а положительные – по полю.

Читайте также:  Магнитные линии магнитного поля тока это замкнутые кривые охватывающие проводник

Если электрические заряды движутся под влиянием внешнего поля в вакууме, то данное явление называют электрический ток в вакууме.

Более детально остановимся на отдельных закономерностях, которые больше характерны для тока проводимости.

Представим, что на концах определенного проводника длиной l существует разность потенциалов Δφ = φ1 – φ2, которая создает внутри этого проводника электрическое поле Е, направленное в сторону падения потенциала (рисунок ниже):

Электрическое поле направленное в сторону падения потенциала

Электрическое поле проводника длиной l

При этом в проводнике возникнет электрический ток, который будет идти от большего потенциала (φ1) к меньшему (φ2).

Движение зарядов от φ1 к φ2 приводит к выравниванию потенциалов во всех точках. При этом в проводнике исчезает электрическое поле, и протекание электрического тока прекращается. Отсюда следует, что обязательным условием существования электрического тока является наличие разности потенциалов Δφ = φ1 – φ2 ≠ 0, а для его поддержания необходимо специальное устройство, которое будет поддерживать данную разницу потенциалов. Это устройство называют источник тока.

В качестве источников тока могут использовать электрические генераторы, аккумуляторы, термоэлементы и гальванические элементы. Источник тока также выполняет еще одну задачу – замыкает электрическую цепь, по которой и осуществляется непрерывное движение заряженных частиц. Электрический ток протекает по внутренней части – источнику тока, и внешней – проводнику. В источнике тока имеется два полюса – положительный с более высоким потенциалом и отрицательный с более низким потенциалом. При разомкнутой внешней цепи на положительном полюсе источника образуется недостаток электронов, а на отрицательном наоборот – переизбыток. В источнике тока разделение зарядов производят с помощью сторонних сил – направленных против кулоновских сил, действующих на разноименные заряды в проводниках самого источника тока. Сторонние силы могут иметь самое различное происхождение – химическое, биологическое, тепловое, механическое и другое.

Если электрическая цепь замкнута, то по ней протекает электрический ток и при этом совершается работа сторонних сил. Данная работа складывается из работы, совершаемой внутри самого источника тока против сил электрического поля (Аист), и работы, совершаемой против механических сил сопротивления среды источника (А / ), то есть:

Работа сторонних сил в источнике тока формула

Электродвижущая сила источника тока – это величина, которая равна отношению работы, совершаемой сторонними силами при перемещении положительного точечного заряда вдоль всей электрической цепи, включая и источник тока, к заряду:

Электродвижущая сила источника тока

По определению работа против сил электрического поля равна:

Работа против сил электрического поля

А / = 0 если полюсы источника разомкнуты, и тогда из формулы (5) следует:

Электродвижущая сила источника тока при разомкнутых полюсах

Отсюда следует, что электродвижущая сила источника тока при разомкнутой внешней цепи будет равна разности потенциалов на его полюсах.

Источник

Постоянный электрический ток

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Читайте также:  Электрическая мощность переменного тока это

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

Читайте также:  Расчет электрических цепей синусоидального тока пример

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Источник



Электрический ток и закон Ома

теория по физике ? постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Источник