Меню

Среднее значение тока протекающего через нагрузку

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

Мощность ток напряжение. Расчёт нагрузки и выбор питающих кабелей.

Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. Мощность ток напряжение, все эти характеристики электроэнергии исследованы известными учеными, которые дали им определения и описали математическими методами взаимные связи между ними.

Мощность ток напряжение

Мощность ток напряжение сопротивление

Так же следует помнить, на величину электрического сопротивления влияет несколько факторов:

В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы схем электроснабжения.

Расчёт сечения питающего кабеля и проводки

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к перегреву провода, плавление его изоляции и в итоге, возгоранию, из-за короткого замыкания.

Мощность ток напряжение

Мощность ток напряжение, удобная шпаргалка

Основным параметром, по которому производят расчет сечения провода, является его продолжительная допустимая токовая нагрузка. Т.е, это такая номинальная величина тока, которую проводник способен через себя пропускать на протяжении длительного времени. Для определения величины номинального тока, необходимо знать приблизительную мощность всех подключаемых электроприборов и оборудования в квартире.

И так, что мы имеем:

Расчет тока, выполняем самостоятельно

Если известны электро-потребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Мощность ток напряжение, расчёты для однофазной сети 220 В

Мощность ток напряжение

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где

P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт)

U – напряжение электрической сети, В (вольт)

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 — 2500 9,0 – 11,4
Морозильники, холодильники 140 — 300 0,6 – 1,4
Мясорубка с электроприводом 1100 — 1200 5,0 — 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 — 1200 3,0 – 5,5
Соковыжималка 240 — 360 1,1 – 1,6
Тостер 640 — 1100 2,9 — 5,0
Миксер 250 — 400 1,1 – 1,8
Фен 400 — 1600 1,8 – 7,3
Утюг 900 — 1700 4,1 – 7,7
Пылесос 680 — 1400 3,1 – 6,4
Вентилятор 250 — 400 1,0 – 1,8
Телевизор 125 — 180 0,6 – 0,8
Радиоаппаратура 70 — 100 0,3 – 0,5
Приборы освещения 20 — 100 0,1 – 0,4

Различные потребители электроэнергии подключаются через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Как рассчитать ток защитного автомата

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле I = P / U определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300
0,75 0,98 10 2200
1,00 1,13 14 3100
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300
Читайте также:  Как изменится индуктивное сопротивление цепи переменного тока если период увеличить в 2 раза

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Мощность ток напряжение, расчёты для трёхфазной сети 380 В

Мощность ток напряжение

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 2250
0,75 0,98 10 3800
1,00 1,13 14 5300
1,50 1,38 15 5700 10 3800
2,00 1,60 19 7200 14 5300
2,50 1,78 21 7900 16 6000
4,00 2,26 27 10000 21 7900
6,00 2,76 34 12000 26 9800
10,00 3,57 50 19000 38 14000
16,00 4,51 80 30000 55 20000
25,00 5,64 100 38000 65 24000

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

В мощных приборах и оборудовании, доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Источник

Среднее значение тока протекающего через нагрузку

Расчет среднего и среднеквадратичного значений тока и напряжения: формулы и калькулятор

Данный текст является расширенным и углубленным вариантом моей старой заметки на сайте we.easyelectronics.ru.

В рамках данной заметки рассмотрим способы вычисления среднего и среднеквадратичного значений тока и напряжения. При этом для простоты ограничимся формами сигнала, характерными для импульсных источников питания. Обращаю ваше внимание – все формулы, приводимые в заметке, даются без выводов, дабы не забивать головы читателей мутной и не особо нужной херней. С другой стороны, если кому-то интересно, откуда данные формулы взялись – можно скачать файл, в котором приведены все необходимые выводы с пояснениями.

Будучи в недавнем прошлом яростным разработчиком всевозможных импульсных источников питания (ИИП), интересовался всяким по данной теме (да и сейчас, бывает, трясу стариной). В частности, весьма важными мне всегда казались такие характеристики сигнала, как среднее и среднеквадратичное значение токов и напряжений в различных точках схемы, поскольку при расчетах ИИП данные параметры используются сплошь и рядом. Чтобы понять, где могут быть полезны данные характеристики, сначала определимся с тем, что мы под ними понимаем.

Естественно, существуют строгие «математические» определения как для среднего, так и для среднеквадратичного значений физических величин, периодически изменяющихся во времени по некоторому закону. Однако, больно уж они мутные и абстрактные, и, на мой взгляд, нужны только при выводе формул. Разработчику же гораздо важнее понимать физический смысл используемых в расчетах величин, поэтому приводимые ниже определения среднего и среднеквадратичного значений будут носить сугубо прикладной характер.

Среднее значение переменного тока или напряжения (во вражеских терминах AVG) – это просто их постоянная составляющая. Поэтому вполне очевидно, что среднее значение широко применяется при расчетах схем, выделяющих из переменного сигнала постоянный уровень. Простейший понижающий преобразователь (Step-Down) с LC-фильтром на выходе, RC-цепочка, призванная выделить постоянное напряжение из поступающего на вход ШИМ-сигнала – всё это примеры того, где без использования среднего значения физической величины ничего толком не посчитаешь.

Среднеквадратичное (действующее, эффективное) значение определяется немного сложнее. Как известно, любой переменный ток (напряжение), проходя через активную линейную нагрузку (например, резистор), выделяет на ней некоторое количество тепла. Но так поступает не только переменный сигнал – постоянный ток тоже будет греть резистор.

Так вот, среднеквадратичное значение переменного тока или напряжения (во вражеских терминах RMS) – это такой постоянный ток (напряжение), который за одинаковый промежуток времени нагреет один и тот же резистор точно так же, как и исходный переменный сигнал. Поэтому одно из важнейших применений среднеквадратичного значения – расчет потерь и соответствующего нагрева для различных элементов силовых цепей ИИП. Хочешь узнать статические потери на ключе флайбэка – будь добр посчитать среднеквадратичное значение тока первички. Надо узнать мощность токосчитывающего резистора – туда же. Даже потери (и приблизительный нагрев) в обмотках трансов и дросселей для хиленьких источников и невысоких частот преобразования в первом приближении можно посчитать при помощи среднеквадратичного значения тока, через эти обмотки протекающего.

В общем, среднее и среднеквадратичное значения используются довольно часто. Поэтому неплохо было бы уметь их рассчитывать для любого сигнала, который может нам встретиться в импульсном источнике питания. При этом лично я разделяю токи и напряжения в ИИП на две большие группы: сигналы с простой формой (элементарные) и сигналы со сложной формой (т.е. те, которые могут быть представлены в виде суммы нескольких элементарных). И поскольку принципы расчета среднего и среднеквадратичного значений для этих двух групп немного отличаются, предлагаю рассмотреть их по отдельности.

Сигналы простой формы

У сигналов простой формы вычислить среднее и среднеквадратичное значение довольно легко – для этого надо всего лишь взять соответствующую формулу и подставить в нее нужные значения. Чтобы постоянно не шариться по различным справочникам, я завел себе специальную табличку, в которую свел расчетные формулы для наиболее часто встречающихся элементарных сигналов:

Читайте также:  Лампочка 12 вольт е27 постоянного тока

(данные формулы, кстати, взяты не с потолка – их вывод при желании можно посмотреть в специальной заметке-пояснении).

Здесь хотелось бы заострить внимание на нескольких моментах. Во-первых, на приведенных выше рисунках рассматривается по два варианта каждого из простейших сигналов: «в общем виде» и «без смещения». При этом с точки зрения разработчика импульсных источников питания наиболее интересным обычно является именно второй вариант, поэтому для него и даны отдельные формулы (чтобы постоянно не подставлять С=0 в «общие» выражения). Во-вторых, пилообразное напряжение, вообще говоря, является сложным сигналом, поскольку может быть представлено в виде суммы двух простых (либо трапеций, либо треугольников). Однако, пила настолько часто встречается при расчетах ИИП, а выражения AVG и RMS для нее настолько лаконичны и красивы, что я в результате включил-таки ее в список сигналов, среднее и среднеквадратичное значение которых вычисляется тупо всего по одной формуле. Ну и в-третьих, вышеприведенная таблица, в принципе, могла бы состоять всего из одной трапеции, ибо из нее легко получить как прямоугольник, так и треугольник, поставляя соответствующие значения «H», «L» и «C». Однако практика показала, что постоянно этим заниматься весьма муторно, ибо мы рассчитываем источник, а не тренируем математические навыки. Поэтому в итоге я себе выписал готовые формулы AVG и RMS для прямоугольника и треугольника, что оказалось весьма и весьма удобным. Ну а в целом – как ни странно, представленные выше формулы для элементарных сигналов покрывают, наверное, 75-80% всех потребностей разработчика импульсных источников питания, что весьма немало. Однако, всё многообразие токов и напряжений в ИИП отнюдь не ограничивается вышеупомянутыми четырьмя (и даже тремя, если не учитывать пилу) формами. Поэтому рано или поздно любой разработчик импульсников сталкивается с необходимостью вычисления среднего и среднеквадратичного значения сложного сигнала (яркий пример – расчет пуш-пула).

Сигналы сложной формы

Как было сказано выше, сигналы сложной формы – это такие, которые могут быть представлены в виде суммы нескольких элементарных сигналов. Применительно к импульсным источникам питания в качестве последних выступают прямоугольник, треугольник или трапеция, и значительно реже – синус, косинус и прочая «плавная» херня. Отметим, что в данном случае, в отличие от простейших форм, нахождение аналитических выражений для среднего и среднеквадратичного значений обычно превращается в неблагодарное занятие. Например, для вывода «среднеквадратичной» формулы нам надо разбить сложный сигнал на несколько простейших, а затем извлечь квадратный корень из суммы квадратов «элементарных» среднеквадратичных значений (думаю, даже понять, о чем говорится в данном предложении, у вас получится далеко не сразу). Найти среднее значение сложного сигнала немного проще (надо просто просуммировать средние «элементарные» значения), однако поверьте – сделать из этого удобоваримую формулу в подавляющем большинстве случаев не удается:

К счастью, готовая формула для нахождения AVG и RMS сложного сигнала обычно не требуется. Чаще всего нам надо просто узнать среднее или среднеквадратичное значение тока (напряжения) именно для нашего конкретного случая, а не вывести аналитическое выражение на все случаи жизни. А это существенно упрощает задачу, ибо посчитать числовое значение AVG или RMS для каждого элементарного сигнала на соответствующем временно́м интервале не так уж и сложно. В качестве примера можно рассмотреть нахождение среднего и среднеквадратичного значения напряжения, характерного для пушпульной, полумостовой и полномостовой схем (данный расчет есть и в специальной заметке-пояснении):

Как следует из предпоследнего рисунка, для начала нам надо разбить исходный сигнал на элементарные. Очевидно, что это будут три трапеции и один прямоугольник:

Дальше нам надо посчитать среднее и среднеквадратичное значение каждого из четырех элементарных сигналов, для чего воспользуемся формулами из вышеприведенной таблицы. Начнем с первого из них — трапеции №1. Как видно из последнего рисунка, это трапеция без смещения с параметрами

Поэтому в соответствии с формулами для трапеции, приведенными выше, будем иметь:

Сигнал №2 – это тоже трапеция без смещения. Параметры данной трапеции будут таковы:

Поэтому среднее и среднеквадратичное значение второго сигнала составят соответственно

Трапеция №3 полностью совпадает с трапецией №1, просто она сдвинута вправо на полпериода. Поэтому как параметры третьего сигнала, так и его среднее и среднеквадратичное значения будут равны соответствующим значениям первого сигнала:

Ну и остался сигнал №4. Данный сигнал представляет собой прямоугольник с параметрами

И после использования формул для вычисления среднего и среднеквадратичного значения сигнала №4, получим следующее:

Теперь у нас есть все данные для нахождения AVG и RMS исходного сигнала. Как было сказано выше, среднее значение находится как сумма средних значений элементарных сигналов, на которые был разложен «исходник», а среднеквадратичное – как квадратный корень из суммы квадратов «элементарных» среднеквадратичных значений. То есть в нашем случае будем иметь

Для проверки полученного результата используем широко распространенное бесплатное ПО LTSpice IV от компании Linear Technology Corporation (LTC). Сгенерировав сигнал с требуемыми параметрами, измерим в эмуляторе среднее и среднеквадратичное его значение за 5 периодов:

Как видим, результаты работы эмулятора полностью совпадают с расчетными AVG и RMS, т.е. предложенный способ вычисления среднего и среднеквадратичного значений для сложного сигнала вполне имеет право на жизнь. Более того, способ этот довольно прост и не требует от разработчика ИИП никаких особых математических навыков. С другой стороны, муторность рассмотренного алгоритма также налицо. Лично меня дичайше бесит постоянно считать на калькуляторе и выписывать на бумажку средние и среднеквадратичные значения для всех элементарных сигналов, на которые раскладывается исходный, а пото́м складывать их на том же калькуляторе (и это в лучшем случае, ибо если требуется RMS, всё становится еще волшебнее). Поэтому я принял решение сделать себе некий инструмент, упрощающий жизнь разработчика ИИП, которым и хотел бы поделиться с читателями.

Данный инструмент – это такая специальная «программа» (cko4aTb бесплатно). «Программа» представляет собой обычный экселовский файл (т.к. программист я тот еще), поэтому для работы нам потребуется «Excel» (у меня вот такой: Microsoft® Excel 2002 (10.4302.2625)). Изначальная и основная задача рассматриваемой «программы» – отрисовка формы трапецеидального сигнала с заданными параметрами (рисуется один период), а также вычисление среднего и среднеквадратичного значений для этого сигнала. Также «программа» умеет рисовать переменную составляющую заданной трапеции (она получается если из исходного сигнала вычесть постоянную составляющую) и вычислять ее RMS-значение (это уж так, чисто на всякий случай). Ну и еще предлагаемый софт позволяет быстро посчитать среднее и среднеквадратичное значения для сложного сигнала, состоящего максимум из 16-ти различных элементарных (большее количество в реальной жизни вряд ли потребуется):

Читайте также:  Защита по току линейных стабилизаторов

Почему в качестве основы взята именно трапеция? Потому что, как было сказано выше, из нее легко получить все основные формы сигналов, встречающихся в импульсных источниках питания, а именно – прямоугольник и треугольник:

Ну а уж на основе этих базовых сигналов можно сляпать и пилу, и напряжение на стоке ключа во флайбэке, и то, что творится на вторичке пушпула и многое другое.

Пользоваться «программой» очень просто. Исходные данные для трапеции вводятся слева в ячейки, выделенные зеленым цветом. После этого чуть ниже можно посмотреть на форму сигнала с введенными параметрами, а еще ниже отобразятся рассчитанные среднее и среднеквадратичное значения этого сигнала. За переменную составляющую трапеции отвечает правый нижний угол экрана (здесь рисуется ее график и рассчитывается значение RMS). Ну а для работы со сложным сигналом предназначен правый верхний угол. Здесь в ячейки, выделенные зеленым цветом, вводятся средние и среднеквадратичные значения элементарных сигналов, из которых состоит «исходник», а ниже рассчитываются уже́ его собственные AVG и RMS.

Отмечу, что на всю «программу» наложена магическая защита, позволяющая редактировать только те ячейки, которые можно. При необходимости защита снимается элементарно («Сервис» => «Защита» => «Снять защиту листа»), однако делать это не рекомендую: можно по дури снести какую-нибудь нужную формулу, восстанавливать которую – лишний геморрой.

Вот, в принципе, и всё описание представленной «программы». Несмотря на свою простоту и очевидность, данный софт довольно существенно помогает и экономит время при расчетах ИИП (ну, во всяком случае, у меня происходит именно так). Например, на расчет среднего и среднеквадратичного значения сложного сигнала, приведенного в предыдущем пункте, понадобится менее минуты. Последовательность действий проста – вводим параметры первой трапеции, затем переписываем рассчитанные для нее значения AVG и RMS в ячейки секции сложного сигнала. Затем то же самое проделываем для остальных трех элементарных функций, из которых состоит «исходник». Всё, остальное «программа» сделает сама, не надо никаких шаманств с бумажками и калькуляторами:

Ну а у меня на сегодня всё. Желаю удачи при проектировании и изготовлении импульсных (и не только) источников питания!

Обсудить эту заметку можно здесь

Ссылки по теме, документация

Заметка-пояснение с выводом формул и примером расчета среднего и среднеквадратичного значений сложного сигнала:

Калькулятор для упрощения вычислений среднего и среднеквадратичного значений простых и сложных сигналов:

Место для разного (сдается)

Создание, «дизайн», содержание «сайта»: podkassetnik
Для писем и газет: Почта России электрическая

Место для &#169 (копирайта, понятно, нет, но ссылайтесь хотя бы на первоисточник)

Источник



Задачи по однофазным прерывателям переменного тока

3.2. ЗАДАЧИ ПО ОДНОФАЗНЫМ ПРЕРЫВАТЕЛЯМ ПЕРЕМЕННОГО

Задача 3.1. Однофазный прерыватель переменного тока «ти­ристор — тиристор» включен в цепь резистора (рис. 3.7). Определить среднее и действующее значения тока тиристоров и нагрузки, а так­же потери в тиристорах. Построить зависимость коэффициента фор­мы тока тиристора от угла направления.

Вольт-амперная характеристика тиристора определяется фор­мулой

где Uто=0,8 В, RT=2 мОм. Напряжение — питания U=220 В, активное сопротивление нагрузки R=2 Ом. Тиристоры имеют симметрич­ное управление; α=60°.

Решение. На рис. 3.8 показаны кривые напряжения и тока нагрузки. Ток нагрузки пропускается тиристором T1 в положитель­ный полупериод и тиристором Т2 в отрицательный полупериод. Бла­годаря симметричности управления среднее Iт. ср и действующее IT значения токов в обоих тиристорах равны:

Используя эти выражения, можно построить зависимость среднего и действующего значений токов тиристоров от угла управления (в отн. ед.) :

где Iт. ср0 и Iт0 соответствуют углу управления α=0. Характери­стики представлены на рис. 3.9,а. На рис. 3.9,6 дана зависимость коэффициента формы тока тиристора от угла управления, построен­ная по выражению

Среднее значение тока нагрузки

его действующее значение при угле управления α=60°

Потери в одном тиристоре при α= 60°:

Задача 3.2. Нагрузкой однофазного прерывателя переменно­го тока со схемой соединений «тиристор — диод» является резистор (рис. 3.10). Определить средние и действующие значения токов, про­текающих через тиристор, диод и нагрузку. Напряжение источника питания U= 110 В, активное сопротивление нагрузки Rd=l,5 Ом, угол управления тиристора α=90°.

Решение. Кривые токов, протекающих через тиристор и диод, приведены на рис. 3.11. В соответствии с задачей 3.1

Из рис. 3.11 следует, что

Среднее значение тока нагрузки представляет собой разность средних значений токов диода и тиристора:

а его действующее значение представляет собой среднее геометри­ческое токов диода и тиристора:

Задача 3.3. Определить средние и действующие значения то­ков диодов и тиристора прерывателя со схемой соединений, пока­занной на рис. 3.12. Угол управления тиристора α=30°, U= 110 В, R=5 Ом.

Решение. Ток нагрузки равен току нагрузки в однофазном симметричном управляемом прерывателе переменного тока со схемой соединений «тиристор — тиристор». В положительный полупериод ток протекает через элементы Д1—Т—Д3—RT, а в отрицательной — через элементы RT—Д2—Т—Д4 (рис. 3.12 и 3.13). Среднее значение токов диодов

Действующее значение токов диодов

Среднее значение тока тиристора Iт. ср=2Iд. ср= 18,52 А. Дей­ствующее значение тока тиристора Iт= Id =21,8 А. Среднее значение тока нагрузки IRcp = 0. Действующее значение тока на­грузки IR = Iт=21,8 А.

ЗадачаОднофазный прерыватель переменного тока со схемой соединений «тиристор — тиристор» работает на нагрузку, со­стоящую из резистора с сопротивлением, . изменяющимся в Диапазоне 0,2 Ом

Источник