Меню

Сопротивление якорной обмотки двигателя постоянного тока

§28. Обмотки якоря

Принцип соединения отдельных проводников в обмотку.

В современных машинах постоянного тока применяют барабанные якоря, в которых проводники обмотки укладывают в пазы на наружной поверхности цилиндрического якоря.

При выполнении обмотки проводники, расположенные в пазах якоря, следует соединять таким образом, чтобы э. д. с. в них складывалась. Для этого два проводника, образующие виток обмотки, должны соединяться так, как указано на рис. 92, а, т. е. проводник А, расположенный под северным полюсом, должен соединяться с проводником Б, расположенным под южным полюсом.

Рис. 92. Принцип выполнения обмотки барабанного якоря

Рис. 92. Принцип выполнения обмотки барабанного якоря

Расстояние между проводниками, составляющими виток, должно быть равно или незначительно отличаться от полюсного деления т — расстояния между осями соседних полюсов. При этом условии виток будет охватывать весь магнитный поток полюса и э. д. с, возникающая в нем при вращении якоря, будет иметь наибольшее значение.

Для наглядного изображения обмоток цилиндрическую поверхность якоря вместе с обмоткой развертывают в плоскость и все соединения проводников изображают в виде прямых линий на плоскости чертежа (рис. 92,б).

Обмотка якоря состоит из отдельных секций. Секцией называют часть обмотки, расположенную между двумя коллекторными пластинами, следующими одна за другой по ходу обмотки. Число секций S в обмотке равно числу коллекторных пластин К. Секция может состоять из одного или нескольких последовательно соединенных витков. В первом случае секции называют одновитковыми (рис. 93, а, см. рис. 85, б), во втором — многовитковыми (рис. 93, б, см. рис. 85, а).

Рис. 93. Схемы одновитковой (а) и многовитковой (б) секций: 1 — активные проводники; 2 — лобовая часть; 3 — активная сторона; 4 — коллекторные пластины

Рис. 93. Схемы одновитковой (а) и многовитковой (б) секций: 1 — активные проводники; 2 — лобовая часть; 3 — активная сторона; 4 — коллекторные пластины

Одновитковые секции состоят из двух активных проводников, которые непосредственно пересекают магнитный поток; активные проводники расположены в пазах якоря и соединяются лобовыми частями, лежащими вне сердечника якоря. Лобовые части в индуцировании э. д. с. практически не участвуют.

Многовитковые секции состоят из двух активных сторон, каждая из которых объединяет несколько активных проводников. В некоторых машинах большой мощности применяют якорные катушки, выполненные из разрезных секций (см. рис. 85, в §27). Обмотка якоря, состоящая из таких секций, называется стержневой.

Все секции обмотки обычно имеют одинаковое число витков. На схемах обмотки секции для простоты всегда изображают одновитковыми. Секцию обмотки укладывают в пазы таким образом, чтобы одна из ее активных сторон находилась в верхнем слое, а другая — в нижнем. На схемах стороны секции, расположенные в верхнем слое, изображают сплошными линиями, а в нижнем слое — штриховыми.

При объединении нескольких секций в якорную катушку каждую из сторон якорной катушки в большинстве случаев укладывают в один общий паз. Для того чтобы э. д. с, индуцированные в отдельных секциях, складывались, при соединении их руководствуются тем же правилом, что и при соединении проводников в витки: расстояние между соединяемыми частями секций должно быть приблизительно равно расстоянию между осями полюсов.

Обмотки якоря подразделяются на две основные группы: петлевые (параллельные) и волновые (последовательные).

Простая волновая обмотка.

Рис. 94. Общий вид волновой обмотки (а) и схема соединения ее секций (б)

Рис. 94. Общий вид волновой обмотки (а) и схема соединения ее секций (б)

При этом после одного обхода окружности якоря, т. е. после последовательного соединения р секций приходят к коллекторной пластине, расположенной рядом с исходной.

Например, начало секции 1 присоединяют к коллекторной пластине КП1, а ее конец соединяют с коллекторной пластиной КП10 и началом секции 2, которая расположена под следующей парой полюсов; затем конец секции 2 соединяют с другой коллекторной пластиной и с началом следующей секции. После завершения полного обхода окружности якоря конец соответствующей секции соединяют с коллекторной пластиной КП2 и началом секции 3, затем таким же образом с коллекторной пластиной КП11 и секцией 4 и т. д. до тех пор, пока обмотка не замкнется, т. е. пока не придут к началу секции 1.

Рис. 95. Форма якорных катушек при волновой (а) и петлевой (б) обмотках: 1, 4 — пазовые части (верхняя и нижняя стороны); 2, 5 — задняя и передняя лобовые части; 3 — задняя головка; 6 — концы секций, припаиваемые к коллектору

Рис. 95. Форма якорных катушек при волновой (а) и петлевой (б) обмотках: 1, 4 — пазовые части (верхняя и нижняя стороны); 2, 5 — задняя и передняя лобовые части; 3 — задняя головка; 6 — концы секций, припаиваемые к коллектору

Для выполнения обмотки необходимо знать ее результирующий шаг у (см. рис. 94, б), первый у1 и второй у2 частичные шаги, а также шаг по коллектору ук. Указанные шаги обычно выражают в числе пройденных секций (шаг по коллектору выражается в этих же единицах, так как число коллекторных пластин равно числу секций).

В простой волновой обмотке число параллельных ветвей обмотки 2а всегда равно двум и не зависит от числа полюсов:

2a = 2 (56)

На рис. 96, а приведена в качестве примера развернутая в плоскость схема простой волновой обмотки якоря четырехполюсной машины, имеющей 19 секций, а на рис. 96, б — эквивалентная схема этой обмотки, показывающая последовательность соединения ее секций и образующиеся параллельные ветви. Цифрами 1, 2, 3 и т. д. обозначены активные проводники, лежащие в верхнем слое каждого паза, а 1′, 2′, 3′ и т. д.— в нижнем слое.

Рис. 96. Схемы простой волновой обмотки четырехполюсной машины

Рис. 96. Схемы простой волновой обмотки четырехполюсной машины

При волновой обмотке в машине можно устанавливать только два щеточных пальца. Однако это делают лишь в машинах малой мощности; в более мощных машинах обычно ставят полный комплект (2р) щеточных пальцев для уменьшения плотности тока под щетками и улучшения токосъема.

Простая петлевая обмотка.

При простой петлевой обмотке каждую секцию присоединяют к соседним коллекторным пластинам (рис. 97).

Рис. 97. Общий вид петлевой обмотки (а) и схема соединения ее секций (б)

Рис. 97. Общий вид петлевой обмотки (а) и схема соединения ее секций (б)

В простой петлевой обмотке секции, расположенные под каждой парой полюсов, образуют две параллельные ветви, поэтому число параллельных ветвей по всей обмотке 2а равно числу полюсов 2р:

2a = 2p (56′)

Условие 2а=2р выражает основное свойство простой петлевой обмотки: чем больше число полюсов, тем больше параллельных ветвей имеет обмотка, следовательно, тем больше щеточных пальцев должно быть в машине.

На рис. 98, а приведена в качестве примера развернутая в плоскость схема простой петлевой обмотки якоря че-тырехполюсной машины, имеющей 24 секции, а на рис. 98, б — эквивалентная схема этой обмотки, показывающая последовательность соединения ее секций и образующиеся параллельные ветви (обозначение проводников и коллекторных пластин такое же, как и на рис. 96).

Рис. 98. Схемы петлевой обмотки четырехполюсной машины (УР — уравнительные соединения)

Рис. 98. Схемы петлевой обмотки четырехполюсной машины (УР — уравнительные соединения)

Применение петлевой и волновой обмоток.

Рис. 99. Схемы параллельных ветвей в четырехполюсной машине при петлевой (а) и волновой (б) обмотках: 1 — коллекторные пластины; 2 — секции обмотки

Число же витков в каждой параллельной ветви при петлевой обмотке в р раз меньше, чем при волновой. Так как напряжение машины определяется числом последовательно включенных витков в каждой параллельной ветви, то в машине с петлевой обмоткой напряжение будет в р раз меньше, чем с волновой обмоткой.

Из сказанного следует, что в машинах, рассчитанных для работы при высоких напряжениях, целесообразно применять волновую обмотку. Такая обмотка имеется у большей части вспомогательных машин электровозов и электропоездов, которые рассчитаны для работы при напряжении 1500—3000 В, и у некоторых тяговых двигателей электропоездов.

В машинах, рассчитанных для работы при больших токах, целесообразно применять петлевую обмотку. Такую обмотку имеет тяговые двигатели электровозов и тепловозов, а также электровозные генераторы возбуждения, используемые при рекуперации. Машины постоянного тока небольшой мощности обычно выполняют двухполюсными. При двух полюсах петлевая и волновая обмотки не различаются.

Уравнительные соединения.

Рис. 100. Э. д. с. индуцированные в параллельных ветвях обмотки якоря при равенстве (а) и неравенстве (б) магнитных потоков отдельных полюсов

Рис. 100. Э. д. с. индуцированные в параллельных ветвях обмотки якоря при равенстве (а) и неравенстве (б) магнитных потоков отдельных полюсов

Однако практически из-за технологических допусков в значении воздушного зазора под различными полюсами, дефектов литья в остове и других причин магнитные потоки отдельных полюсов несколько различаются, вследствие чего в параллельных ветвях действуют неодинаковые э. д. с.

Если два параллельно соединенных источника имеют неодинаковые э. д. с. (рис. 101), то по контуру, образованному двумя источниками, будет проходить некоторый дополнительный ток, обусловленный разностью э. д. с. Е1—Е2 источников.

Рис. 101. Возникновение уравнительного тока при неравенстве э. д. с. двух источников

Рис. 101. Возникновение уравнительного тока при неравенстве э. д. с. двух источников

Этот ток носит название уравнительного. Уравнительный ток Iур циркулирует внутри источников, не совершает никакой полезной работы, а создает лишь потери электрической энергии в обоих источника. Он вызывает неравномерную нагрузку отдельных источников, перегружая источник с большей э. д. с. и разгружая источник с меньшей э. д. с.

В машинах постоянного тока при неравенстве э. д. с. в отдельных параллельных ветвях возникающие уравнительные токи будут перегружать щетки и ухудшать работу машин.

Например, при неравенстве э. д. с. Е1 и Е2 в параллельных ветвях обмотки якоря 3 (рис. 100, б) по обмотке и через щетки 1 (А — Г) будет проходить уравнительный ток Iур. Разница между э. д. с. Е1 и E2 составляет 3—5 %, но из-за небольшого сопротивления обмотки якоря этого оказывается достаточно, чтобы по параллельным ветвям проходили довольно значительные уравнительные токи, которые способствуют возникновению искрения под щетками.

Чтобы уравнительные токи замыкались помимо щеток, в петлевых обмотках предусматривают уравнительные соединения, которые соединяют точки обмотки, имеющие теоретически равные потенциалы. Такими точками являются начала и концы проводников обмотки якоря, расположенные один от другого на расстоянии, равном двойному полюсному делению 2т, Идеальным было бы соединить все такие точки обмотки. Однако большое число уравнительных соединений сильно удорожает обмотку, поэтому практически достаточно иметь одно-два уравнительных соединения на каждую группу секций, лежащих в одном пазу якоря.

С производственной точки зрения уравнительные соединения удобно присоединять к коллекторным пластинам 2 (см. рис. 100,б). Обычно они связывают каждую третью — пятую пластины коллектора (рис. 102).

Рис. 102. Схема выполнения уравнительных соединений I, II, III в петле вой обмотке.

Рис. 102. Схема выполнения уравнительных соединений I, II, III в петле вой обмотке.

Площадь поперечного сечения проводов, которыми выполняют уравнительные соединения, в 3—5 раз меньше площади поперечного сечения проводников обмотки якоря. Уравнительные соединения располагают чаще всего под лобовыми частями обмотки якоря рядом с коллектором, в этом случае они находятся вне магнитного поля главных полюсов и в них не индуцируется э. д. с.

Читайте также:  Используя знания по физике объясните почему до пострадавшего от электрического тока

Сложные обмотки.

При мощности машины более 1000 кВт применяют сложные многоходовые обмотки якоря, представляющие собой несколько простых петлевых или волновых обмоток, намотанных на общий якорь, смещенных относительно друг друга и присоединенных к одному коллектору. Применение многоходовых обмоток позволяет увеличивать число параллельных ветвей при неизменном числе полюсов, увеличение которых в ряде случаев невозможно. Однако эти обмотки требуют сложных уравнительных соединений.

Одной из разновидностей сложных обмоток является параллельно-последовательная обмотка, применяемая в некоторых тяговых генераторах. Она представляет собой комбинацию простой петлевой 1 (рис. 103, а) и многоходовой волновой 2 обмоток.

Рис. 103. Схема параллельно-последовательной обмотки (а), расположение ее проводников в пазах (б) и форма якорной катушки (в)

Рис. 103. Схема параллельно-последовательной обмотки (а), расположение ее проводников в пазах (б) и форма якорной катушки (в)

Обе обмотки уложены в одни и те же пазы и имеют общие коллекторные пластины. Для равенства э. д. с. параллельных ветвей, образуемых петлевой и волновой обмотками, число параллельных ветвей этих обмоток должно быть одинаково.

Параллельно-последовательную обмотку выполняют в четыре слоя (рис. 103,б), так как в пазы якоря закладывают две двухслойные обмотки. Эта обмотка получила название «лягушачья» из-за формы свой якорной катушки (рис. 103, в). Рассматриваемая обмотка не требует уравнительных соединений, что выгодно отличает ее от других обмоток. Возможность уменьшения напряжения, действующего между соседними коллекторными пластинами, вдвое по сравнению с простыми обмотками является важным преимуществом параллельно-последовательной обмотки.

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Читайте также:  Кратность пускового тока трансформаторов

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник

Машины постоянного тока

Определить ток якоря и напряжение генератора с независимым возбуждением для токов возбуждения I в , равных 0,4 А и 0,2 А. Сопротивление цепи якоря r я =0,6 Ом , нагрузки r н =9,4 Ом . Характеристика холостого хода генератора изображена на рис. 9.12. Указать не правильный ответ.

Для I в = 0,4 А : 1) I я =14 А. 2) U я = 131,6 В.

Для I в = 0,2 А : 3) I я = 12А. 4) U я = 102,8 В.

Электродвижущую силу генератора определяем по характеристике холостого хода рис.9.12:

а) при I В =0,4 А ЭДС Еa= 140 В;

б) при I В =0,2 А ЭДС Е б = 120 В.

Ток якоря определяем по закону Ома:

a) I я,а =E а /(r н +r я )=140/(9,44+0,6)=14 A;

б) I я,б =E б /(r н +r я )=120/(9,4+0,6) =12 А.

Напряжение генератора меньше ЭДС на падение напряжения в обмотке якоря:

а) U а =Е а – I я,а r я =140 — 14∙0,6= 131,6 В ;

б) U а =Е а – I я,а r я =120 — 12∙0,6 = 112,8 В. Ответ: 4.

Обмотка возбуждения двигателя постоянного тока с параллельным возбуждением по ошибке оказалась включенной неправильно (рис. 9.25). Как будет вести себя двигатель после включения его в сеть при r п = 9 r я , I п = 2,5 I ном , если момент нагрузки:

а) М с =0 ; б) М с =0,5 М ном . Указать правильный ответ.

  1. В обоих случаях двигатель не будет вращаться.
  2. В обоих случаях двигатель разгонится до недопустимо большой частоты вращения.
  3. а) двигатель разгонится до n≈n 0 ; б) двигатель не будет вращатся.
  4. а) двигатель пойдет в разнос; б) двигатель не будет вращатся.

Пусковой ток якоря двигателя I П =U а /(r П +r я ) . Напряжение на обмотке якоря двигателя меньше напряжения сети на падение напряжения в пусковом реостате:

U Дв =U ном – I П r П =U ном – U нмо r П /(r я +r П )=U ном – U ном 9r я /(r я +9r я )=U ном – 9U ном /10=U ном /10

Номинальный ток возбуждения двигателя имеет место при номинальном напряжении I В,ном =U ном /r В . В данном случае напряжение на обмотке возбуждения равно напряжению на обмотке якоря, которое меньше номинального в 10 раз. Если допустить, что характеристика зависимости магнитного потока двигателя от тока возбуждения — почти прямая линия, то магнитный поток двигателя будет меньше номинального в 10 раз.

Момент, развиваемый двигателем при пуске, равен

М П =k M ФI П = k M Ф ном 2,5I ном /10= 0,25 k M Ф ном I ном =0,25 М ном .

При пуске вхолостую двигатель пойдет в ход и разгонится до частоты вращения, примерно равной частоте вращения идеального холостого хода, так как по мере разбега двигателя вследствие уменьшения тока в пусковом реостате напряжение на обмотке якоря и, следовательно, на обмотке возбуждения будет увеличиваться и к концу разбега будет близко к номинальному.

При пуске под нагрузкой с моментом Мс=0,5 М ном двигатель вращаться не будет, так как момент, развиваемый двигателем, меньше момента сил сопротивления на валу: Мс>М Дв ,

т. е. 0,5 М ном >0,25 М ном . Ответ: 3.

Определить сопротивление обмотки якоря двигателя r я и пускового реостата r п , который надо включить в цепь якоря, чтобы ток якоря при пуске I я,п =2,5 I ном . Данные двигателя: P ном =39 квт; U ном =220 В; I ном =200 А. Указать правильный ответ.

1) r я =1,0 Ом. 2) r я =0,125 Ом. 3) r п =0,3775 Ом. 4) r п =0,44 Ом.

Потери в обмотке якоря при номинальной нагрузке равны

∆P ном =U ном I ном — P ном = 220∙200 — 39∙10 3 = 5000 Вт . Сопротивление обмотки якоря равно r я =∆P ном / 2I ном 2 =5000/2∙200 2 = 0,0625 Ом.

Сопротивление пускового реостата определяем по закону Ома

r П =U ном /I ном – r я =200/2,5∙200 — 0,0625 = 0,3775 Ом. Ответ: 3.

В каком соотношении находятся ЭДС обмотки якоря двигателя при его работе в точках /, 2, 3, 4 характеристик, изображенных на рис. 9.43? Характеристика, на которой расположена точка 2, является естественной. Указать правильный ответ.

  1. E 1 =E 2 =E 3 =E 4 . 2) E 1 =E 2 >E 3 >E 4 . 3) E 1 >E 2 >E 3 >E 4 . 4) E 1 2 3 4 .

Электродвижущая сила, возникающая в обмотке якоря двигателя,

E=k e Фn=U – I я (r я +r Д ).

Из взаимного расположения характеристик видно, что характеристика, на которой расположена точка 1, соответствует ослабленному магнитному потоку двигателя; характеристика, на которой расположена точка 3,— реостатная (в цепи якоря включен добавочный резистор); характеристика, на которой расположена точка 4, имеем место при пониженном напряжении на обмотке якоря двигателя; например в системе Г—Д:

Е 1 =U ном – I я r я Е 2 =U ном – I я r я =k e Фn 2 E 3 =U ном – I ном( r я + r Д )= k e Фn 3

Е 4 =U′ – I я r я =n′ 0 U ном /n 0 – Iяrя=k e Фn 1

Так , как ток якоря I я1 двигателя для всех точек одинаков, a n 2 >n 3 >n 4 , то E 1 =E 2 >E 3 >E 4 .

Что произойдет при обрыве обмотки возбуждения двигателя постоянного тока с пара.ллельным возбуждением, если он работает: а) с номинальным моментом на валу

М С = М ном , б) вхолостую? Указать неправильный ответ.

а) При номинальном моменте на валу:

1) сгорят предохранители, и двигатель остановится;

2) если предохранители не сгорят, двигатель остановится.

б) При работе вхолостую:

3) сгорят предохранители;

4) если предохранители не сгорят, двигатель остановится;

5) если предохранители не сгорят, частота вращения вигателя начнет увеличиваться и двигатель может пойти вразнос.

При обрыве цепи обмотки возбуждения двигателя постоянного тока с параллельным возбуждением исчезнет ток возбуждения и, следовательно, магнитный поток, создаваемый им. Останется лишь магнитный поток остаточного намагничивания, который составляет не более 3—5 % номинального потока .

Из выражения Е=U ном – I я r я =k e Фn следует, что в той же степени уменьшится ЭДС обмотки якоря до (3—5) % U ном .

Если допустить, что частота вращения двигателя вследствие инерции якоря в течение времени после обрыва обмотки и исчезновения тока возбуждения практически не изменится, то справедливо следующее.

До обрыва ЭДС двигателя составляла:

а) при работе двигателя с номинальным моментом иа валу

Е ном =U ном – I я,ном r я =(0,85 — 0,95) U ном ;

б) при работе вхолостую Е x1 =U ном .

В результате значительного уменьшения ЭДС двигателя, как следу-из выражения I я =(U ном – Е)r я , возрастает ток якоря двигателя. Для случая а) имеем

I я,ном =(U ном — (0,85 — 0,95) U ном )/ r я ;

I я,а =(U ном — (0,03 — 0,05) U ном )/ r я ,

I я,а = I я,ном (U ном — (0,03 — 0,05) U ном )/(U ном — (0,85 — 0,95) U ном )≈(7—18) I я,ном .

Для случая б) ток увеличится в несколько большей степени, так как

Предохранители обычно рассчитываются на ток не более (3—4) I ном , .поэтому в обоих случаях должны сгореть предохранители и двигатель остановится.

Момент, развиваемый двигателем при обрыве в цепи обмотки возбуждения, равен

М=k М ФI я =k М (0,03 — 0,05)Ф ном (7—18) I я,ном =(0,21— 0,9)М ном

Поэтому, если предохранители не сгорят в первом случае, двигатель остановится, так как момент, развиваемый двигателем, меньше момента сил сопротивления навалу, т.е. Мд (0,21— 0,9)М ном ном , и если двигатель не будет отключен, он выйдет из строя.

Во втором случае при отсутствии момента на валу частота вращения двигателя начнет увеличиваться и может достичь недопустимого значения – двигатель пойдет вразнос:

n 0 =U ном /k е Ф ном ; n′ 0 =U ном /k е (0,03 — 0,05)Ф ном ;

n′ 0 = n 0 /(0,03 — 0,05) ≈ (30— 20) n 0 . Ответ: 4.

Определить сопротивление, включенное в цепь якоря двигателя постоянного тока с последовательным возбуждением, при котором двигатель имеет характеристику а (рис. 9.60). Сопротивление цепи r я + r в =0,3 Ом . Характеристики естественная (б) и искусственная с добавочным сопротивлением в цепи якоря 1,5 Ом (в) изображены на рис. 9.60. Указать правильный ответ.

1) 1 Ом. 2) 0,75 Ом. 3) 0,6 Ом. 4) не достаточно условий.

Уравнение естественной характеристики имеет вид:

n е =[U ном – I я( r я + r В )]/ k l Ф= n 0е -∆ n е

Уравнение искусственной характеристики

n И =[U ном – I я( r я + r В +r Д )]/ k е Ф= n 0И — ∆ n И

Если двигатель работает на естественной или искусственной характеристике с одинаковым током якоря, магнитные потоки двигателя будут иметь одинаковое значение, так как Ф В ≡ I В = I я .

Тогда ∆ n е / ∆ n И = ( r я + r В )/ ( r я + r В +r Д )

Из отношения ∆n е к ∆n И на искусственной характеристике а, например для тока

I я = 40 А , определяем ∆n е из ∆n е /(∆n е +400)=0,3/(0,3+ +1,5) , откуда ∆n е = 80 об/мин.

Из отношения ∆n е к ∆n И на искусственной характеристике а, например для тока

I я =40 А , определяем искомое сопротивление ∆n е /( ∆n е +200)=80/(80+200)=0,3(0,3+r Д ) , откуда r Д =0,75 Ом. Ответ: 2.

Определить частоту вращения и ЭДС якоря двигателя постоянного тока со смешанным возбуждением при токах якоря для двух случаев: а) I я =0,5I я , ном ; б) I я =I я , ном , если в цепь якоря включено добавочное сопротивление r Д =2 Ом. Данные двигателя:

Р ном = 9 кВт; n ном =900 об/мин; U ном =220 B; I ном =50 А; r я +r в =0,338+0,062=0,4 Ом. Естественная скоростная характеристика изображена на рис. 9.67. Указать неправильный ответ. 1) n а =860 об/мин. 2) Е а =160 В. 3) n б =420 об/мин. 4) Е б =100 В.

Решение 9-67. Электродвижущая сила якоря равна:

а) при I я =0,5I ном

Е а =U ном – I я( r я + r В +r Д )]= 220 — 25 (0,4 + 2) = 160 В ;

б) при I я =I ном ,

Е б = 220 — 50 (0,4 +2)= 100 В .

Уравнение электромеханической, естественной характеристики имеет вид

n е =[U ном – I я( r я + r В )]/ k e Ф

n И =[U ном – I я( r я + r В +r Д )]/ k e Ф

Если двигатель работает на естественной или искусственной характеристике с одинаковым током якоря, магнитные потоки двигателя будут иметь одинаковое значение, так как I посл =I; Ф≡ (Iw) п,о + (Iw) посл =(Iw) п,о +сI я , где (Iw) п,о —МДС параллельной обмотки возбуждения, которая от нагрузки не зависит.

Тогда из отношения уравнений для естественной и искусственной характеристик можно получить

n И = n е [U ном – I я( r я + r В +r Д )] / [U ном – I я( r я + r В )].

При I я = 0,5 I ном частота вращения на естественной характеристике (см. рис. 9.67) равна

n е = 1,25n ном = 1,25∙900 = 1125 об/мин ;

n а =n И = n е [U ном – I я( r я + r В +r Д )] / [U ном – I я( r я + r В )]= n е Е а / [U ном – I я( r я — r В )]=

=1125∙ 160/(220 – 25 ∙0,4)=860 об/мин.

При токе I я = I ном имеем n е = n ном = 900 об/мин;

n б =n И = n е Е б / [U ном – I ном( r я + r В )]=900 ∙100/(220 – 50 ∙0,5)=450 об/мин.

Генератор постоянного тока с независимым возбуждением приводится в движение асинхронным двигателем (рис. 9.73, а), механическая характеристика которого изображена на рис. 9.73, б. При нагрузке генератора 20 А напряжение на его выводах 220 В , а момент на валу асинхронного двигателя оказался равным номинальному значению. Определить напряжение при холостом ходе генератора ( I я = 0 ). Потерями мощности в генераторе пренебречь. Сопротивление якоря генератора r я =0,5 Ом. Номинальная частота вращения асинхронного двигателя n ном =920 об/мин . Указать правильный, ответ.

1) 230 В. 2) 240 В. 3) 220 В. 4) 250 В.

Электродвижущая сила генератора при нагрузке 20 А равна

Е=U – I я r я =220 + 20∙0,5 = 230 В .

При холостом ходе генератора нагрузки на валу двигателя не будет, его частота вращения и, следовательно, частота вращения генератора будут равны примерно частоте вращения магнитного потока асинхронного двигателя n=n 0 =1000 об/мин; определим ЭДС генератора:

при нагрузке E= k e Фn ном = ke Ф ∙920 = 230 В;

при холостом ходе E 0 = k e Фn 0 = ke Ф∙1000 ;

из отношения Е 0 к Е следует:

Е 0 = E n 0 / n 0 = 230∙1000/920 = 250 В.

Валы двух одинаковых двигателей постоянного тока Д 1 и Д 2 с независимым возбуждением с помощью кулачковых муфт К 1 и К 2 соединены с валом производственного механизма ПМ (рис. 9.74). Якоря двигателей соединены последовательно и включены в сеть с напряжением, в 2 раза большим номинального напряжения двигателей. Двигатели нагружены номинальным моментом и вращаются с номинальной частотой вращения. Как изменятся частоты вращения двигателей, если у муфты К 2 срежется шпонка и вал двигателя Д 2 потеряет связь с механизмом? Указать правильный ответ.

1) Частота вращения обоих двигателей уменьшится.

2) Частота вращения обоих двигателей увеличится.

3) Оба двигателя остановятся.

  1. Двигатель Д 1 остановится, частота вращения двигателя увеличится почти в 2 раза.

В условиях нормальной работы токи якорей равны:

I я =(2U ном – 2E)/2r я =(U ном – E)/r я =I ном .

Моменты, развиваемые двигателями, также были равны:

М Д1 =М Д2 =k М ФI ном .

Момент сопротивления распределялся поровну на каждый двигатель:

М С,Д1 =М С,Д2 = М=М С /2. Как только вал двигателя Д 2 потеряет механическую связь с механизмом, момент сил сопротивления на его валу исчезнет и его частота

вращения, как это вытекает из уравнения движения

Одновременно будет увеличиваться его ЭДС

Е Д2 = k е Фn Д2

и уменьшаться ток в цепи якорей двигателей. В результате момент, развиваемый двигателем Д 1 , будет уменьшаться и окажется меньше момента, создаваемого механизмом на его валу; частота вращения двигателя начнет уменьшаться, и двигатель постепенно остановится. Поскольку двигатель Д 2 оказался без нагрузки, он разгонится до частоты вращения, при которой ток в цепи якорей будет близок к нулю:

I я =(2U ном – E Д2 )/2r я =0,

Е Д2 == 2U ном = 2k e Фn 0 = k e Ф Д2 .

Таким образом, двигатель Д 2 будет вращаться с частотой, примерно в 2 раза большей частоты вращения идеального холостого хода. Ответ: 4.

Причинами использования в качестве двигателей электропровода двигателей постоянного тока с последовательным возбуждением, а не с параллельным являются: а) возможность длительной их работы с номинальным моментом при длительном снижении напряжения в сети постоянного тока, б) независимость пускового момента от напряжения сети.

Два двигателя постоянного тока, один с последовательным, другой с параллельным возбуждением, имеют следующие паспортные данные:

Р ном = 60 кВт, U ном = 440 В, I ном =160 А, n ном = 960 об/мин. Сопротивление последовательной обмотки возбуждения . r в = 0,5r я . Зависимость магнитного потока от МДС обмотки возбуждения двигателей изображена на рис. 9.91.

Определить ток в цепи якоря, частоту вращения двигателей при моменте сил

сопротивления на валу М с =М ном , значение которого не зависит от частоты вращения, при их работе от сети с напряжением U =0,6U ном , а также значения максимально возможных моментов при этом напряжении, если значения пусковых токов I п =2,5I ном . Указать неправильный ответ. Двигатель с параллельным возбуждением: 1) I я =230 А. 2 ) n=562 об/мин. 3) М п =0,7 М п(Uном) .

Двигатель с последовательным возбуждением: 4) I я =160 А. 5) n=547 об/мин.

Решение 9-91. Сопротивление обмотки якоря

r я =∆P ном /2I ном 2 =(U ном I ном — P ном )/ 2I ном 2

Двигатель с последовательным возбуждением. Сопротивление обмотки последовательного возбуждения

r В = 0,5 r я =0,5∙0,137 =0,0685 Ом

при номинальном напряжении

М C =М ном =k М Ф ном I я,ном , I я,ном =(U ном – E ном )/(r я +r В )

при пониженном напряжении

М C =М′= k М Ф′I я , I я ′=(0,6U ном – E)/(r я +r В ).

Поскольку момент сил сопротивления на валу остался неизменным, , очевидно, что

Ф′=Ф ном , I я ′= I я,ном ,

Значение частоты вращения при U= 0,6 U ном можно определить из соотношения ЭДС

Е ном =U ном – I я,ном (r я + r В ) = k e Фn 1 = 440 — 160 (0,137+0,0685) = 407 В;

Е′ =0,6U ном – I я,ном (r я + r В ) = k e Фn′= 0,6∙440 — 160 (0,137 4-0,0685) = 231 В ,

n′= n 0 E′/E ном =960∙231/407=547 об/мин .

Пусковой, момент при U= U ном

М п,ном =k М Ф ном I′ я,п

М′ п =k е Ф ном I я,п

Двигатель с параллельным возбуждением. Ток возбуждения и МДС параллельной обмотки возбуждения при U= 0,6U ном составляют I B =0,6 I в,ном и (Iw)′ В =0,6 (Iw) В,ном ,

так как ток возбуждения пропорционален напряжению сети. Магнитный поток, соответствующий этой МДС, определяется из кривой Ф=(Iw) (см. рис. 9.91):

Ток якоря при U= 0,6U ном определяется из выражения

М С = М ном =k е Ф′ I′ я = k е Ф ном I я,ном ;

I′ я = I я,ном Ф ном /Ф′=160/0,7=230 А.

Значение частоты вращения определяется из соотношения ЭДС:

Е ном =U ном – I я,ном r я = k е Ф ном n ном = 440 – 160∙0,137 = 418 В;

Е′ =0,6U ном – I′ я r я = k е Ф′ n′=0,6∙440 – 230∙ 0,137 ==232,5 В ;

n′= n ном E′ Ф ном /E ном Ф′=960 ∙232,5/(418 ∙0,7)=762 об/мин

Источник



Определение сопротивления якорной цепи двигателя. Расчет механических характеристик при номинальном напряжении на якоре

Страницы работы

Фрагмент текста работы

Министерство сельского хозяйства Российской Федерации

Красноярский Государственный Аграрный Университет

Контрольная работа № 4

Машины постоянного тока

Вариант № 53

Выполнил: ст. гр. ЭТ-33

Контрольная работа № 4

Машины постоянного тока

Вариант № 53

1. Начертить электрическую схему соединения обмоток двигателя постоянного тока с параллельным возбуждением.

2. Приближенно определить сопротивление якорной цепи двигателя.

3. Рассчитать рабочие характеристики по техническим данным двигателя. Начертить графики рабочих характеристик.

4. По заданному значению пускового тока или момента определить сопротивление пускового реостата.

5. Рассчитать естественную механическую характеристику и искусственные (реостатные) механические характеристики при добавочных сопротивлениях, последовательно включенных в цепь якоря. Начертить графики характеристик.

6. Рассчитать механические характеристики при номинальном напряжении на якоре и ослаблении магнитного потока на 20% и 40%. Начертить графики характеристик.

Технические данные двигателя постоянного тока

Источник