Меню

Скорость заряда конденсатора от тока

Зарядка и разрядка конденсатора

Зарядка конденсатора. Если присоединить конденсатор к источнику постоянного тока (рис. 129 ), то на обкладках конденсатора, как известно, будут накапливаться электрические заряды q, т.е. будет происходить процесс зарядки конденсатора. Во время зарядки в цепи протекает ток

(11-1)

Следовательно, зарядный ток конденсатора пропорционален скорости изменения напряжения на обкладках конденсатора.

Рассмотрим процесс изменения напряжения на конденсаторе и тока в цепи во время зарядки конденсатора, т.е. в отрезке времени от момента подключения цепи к источнику постоянного напряжения до момента полной зарядки конденсатора, что соответствует переходному процессу в RC- цепи.

Уравнение электрического состояния согласно второго закона Кирхгофа имеет вид:

. (11-2)

Подставим значение тока в последнее выражение

или

Разделив переменные, получим

.

Произведение сопротивления и емкости

(11-3)

называют постоянной времени цепи. Размерность постоянной времени

.

(11-4)

Это выражение представляет собой дифференциальное уравнение, отражающее характер изменения напряжения на обкладках конденсатора во время переходного процесса.

Решим это уравнение и построим график зависимости Проинтегрируем уравнение

После интегрирования получим

где постоянная интегрирования.

Значение постоянной интегрирования определим из начальных условий. В момент включения напряжение на конденсаторе равно нулю следовательно

т.е.

Это уравнение можно переписать так:

Приведем левую часть равенства под знак логарифма, получим

Решая последнее уравнение относительно найдем

. (11-5)

Это выражение показывает, что напряжение на конденсаторе изменяется по экспоненциальному закону.

Теоретически процесс зарядки длится бесконечно долго, так как напряжение станет равным U только при

Для построения графика определим значения для различных моментов времени:

при

t =

Из рис. 130а видно, что процесс зарядки практически заканчивается через 4-5 . Причем, чем больше , тем больше времени потребуется, чтобы напряжение на конденсаторе достигло значения . Следовательно, по постоянной времени можно определять продолжительность переходного процесса. Так как то чем больше и С, тем медленнее происходит процесс зарядки конденсатора.

Приложенное напряжение для — цепи по величине является тем пределом, к которому стремится напряжение на конденсаторе, поэтому чем больше , тем больше С. Однако величина не влияет на характер кривой , так как характер ее изменения зависит от множителя т.е. от параметров R и C.

Падение напряжения на резистивном элементе

Подставив в это выражение

(11-6)

Видно, что напряжение на резистивном элементе убывает по экспоненциальному закону.

Ток, проходящий по резистивному элементу, а следовательно, и по цепи (рис.130б),

(11-7)

где

Выражение показывает, что ток в цепи изменяется также по убывающей экспоненте, имея максимум в момент включения цепи, т.к. при а после зарядки конденсатора при

Разрядка конденсатора. На рис. 131 показана схема при разрядке конденсатора на резистивный элемент.

Рассмотрим характер изменения и при разрядке конденсатора. Если конденсатор, заряженный до напряжения U, соединить с некоторым резистивным элементом R, то в цепи появится ток, заряды с обкладок начнут убывать и, следовательно, конденсатор будет разряжаться. Ток в цепи определяется скоростью убывания зарядов на обкладках конденсатора: . (11-8)

Знак минус свидетельствует о убывании зарядов на обкладках конденсатора.

Уравнение электрического состояния цепи при разрядке конденсатора имеет вид:

(11-9)

Подставив в это выражение значение тока, получим

Так как то

Разделив переменные, определим

(11-10)

Это выражение представляет собой дифференциальное уравнение, отражающее характер изменения напряжения на конденсаторе при разрядке на резистивный элемент. После интегрирования уравнения ( 11-10 ), получим

Значение постоянной интегрирования определим из начальных условий. В момент включения цепи ( напряжение на конденсаторе Следовательно, откуда т.е. Тогда

=

. (11-11)

Это выражение показывает, что напряжение на конденсаторе при его разрядке изменяется по закону убывающей экспоненты.

Анализ кривой (рис. 132 ) подтверждает, что процесс разрядки конденсатора не может происходить мгновенно, и, следовательно, напряжение уменьшается не скачком, а плавно убывает со временем до нуля.

Переходный процесс поддерживается энергией, накопленной в электрическом поле конденсатора. Запас энергии непрерывно сокращается, а следовательно, уменьшается напряжение на конденсаторе.

Разрядный ток в цепи по закону Ома

(11-12)

График при зарядке конденсатора аналогичен (рис. 130б) графику при его разрядке.

Саморазрядка конденсатора. Если конденсатор не подключать к резистивному элементу, то с течением времени он разрядится. Это объясняется тем, что практически диэлектрик конденсатора обладает хотя и малой, но отличной от нуля проводимостью, и поэтому конденсатор разряжается через диэлектрическую среду , из которой он изготовлен. Разрядку конденсатора через диэлектрик называют саморазрядкой.

Постоянная времени саморазрядки Практически саморазрядку можно считать законченной через время

Определим постоянную времени саморазрядки плоского конденсатора. Считая

получим

(11-13)

Таким образом, постоянная времени саморазрядки конденсатора зависит только от свойств диэлектрика ( и не зависит от формы конденсатора.

Источник

Что такое конденсатор и для чего он нужен в схемах

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.
Что такое конденсатор

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Читайте также:  Как разбираться в токе

Как работает конденсатор

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Принцип работы конденсатора

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

Как работает конденсатор в схеме

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Конденсатор и постоянный ток

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Принцип работы конденсатора в цепи постоянного тока

Лампочка затухает при полной зарядке.

Почему конденсатор не пропускает постоянный ток

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Конденсатор и переменный ток

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Как работает конденсатор при переменном токе

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
Назначение конденсатора в схеме

Как работает конденсатор в схеме

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Зачем конденсатор нужен в усилителе

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

Читайте также:  Прямоугольный импульс тока это

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Источник

Заряд и разряд конденсатора

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора.

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е. При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+ q ), а вторая обкладка получает равный по величине отрицательный заряд ( -q ). Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

Схема заряда конденсатора

P ис. 1 . Схема заряда конденсатора

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов. Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током I зар.

Зарядный ток в цени протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора. График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.

Графики напряжения и тока при заряде конденсатора

Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома io зар = E/ R i , так как вся э. д. с. генератора приложена к сопротивлению R i.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно па конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е — U с. Поэтому i зар = (E-Uс)/R i

Отсюда видно, что с увеличением Uс уменьшается i зар и при Uс = E зарядный ток становится равным нулю.

Про закон Ома подробнее смотрите здесь: закон Ома для участка цепи

Продолжительность процесса заряда конденсатора зависит от двух величии:

1) от внутреннего сопротивления генератора R i ,

2) от емкости конденсатора С.

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением R i = 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: R i = 5 Ом.

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Графики зарядных токов при разных сопротивлениях

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением R i = 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2).

Величина начального зарядного тока io зар = Е/ Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Графики зарядных токов при разных емкостях

Рис. 3. Графики зарядных токов при разных емкостях

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление.

На обкладках конденсатора имеется напряжение U с, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током i разр.

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равном нулю: Uc=0 .

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Uc о =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее.

Читайте также:  Ток опасен тем что он бесшумный смертельный невидимый постоянный

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома i разр = Uc / R

Графики напряжения и токов при разряде конденсатора

Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается.

Продолжительность разряда зависит:

1) от емкости конденсатора С

2) от величины сопротивления R , на которое конденсатор разряжается.

Чем больше сопротивление R , тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно.

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 — при R = 40 Ом, i оразр = Uc о/ R = 100/40 = 2,5 А и кривая 2 — при 20 Ом i оразр = 100/20 = 5 А.

Графики разрядных токов при разных сопротивлениях

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени. Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление R =40 Ом (рис. 6 : кривая 1 — для конденсатора емкостью 10 мкф и кривая 2 — для конденсатора емкостью 20 мкф).

Графики разрядных токов при разных емкостях

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток. Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = W с = С U 2 /2

Пример. Конденсатор С=10 мкф заряжен до напряжении U в = 500 В. Определить энергию, которая выделится в вило тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = W с = С U 2 /2 = (10 х 10 -6 х 500)/2 = 1,25 дж.

Источник



Время заряда конденсатора

Время заряда конденсатора зависит от первоначального напряжения и емкости самого накопителя, ЭДС источника тока, сопротивления всех участков электрической цепи.

Конденсатор

Конденсатор – устройство для накопления электрического заряда, состоящее из двух и более проводников (обкладок), разделенных диэлектриком. По предназначению он напоминает батарейку.

Если замкнуть цепь с заряженным конденсатором, он будет отдавать энергию и разряжаться, потечет ток. Когда же он разрядится полностью, поток электронов останавливается.

Главной характеристикой конденсатора является емкость (С), т.е. способность накапливать электрический заряд. Она определяется отношением этого показателя (Q) к напряжению (U):

Время, необходимое для зарядки конденсатора

В идеальных условиях, когда источник напряжения мощный, нет препятствий потоку электричества, конденсатор безупречен, время зарядки конденсатора будет равно 0.

На практике же на каждом участке цепи существует явное (резисторы) или неявное (провода, источник напряжения и т.п.) сопротивление. В этом случае время заряда конденсатора будет зависеть от сопротивления во всей цепи и его емкости.

В самом начале заряда на обкладках накопителя много свободного места, напряжение равно нулю. Начальный ток в этот момент максимален. По мере заполнения конденсатора заряженными частицами их поток постепенно снижается, U растет все медленнее. Когда не останется свободного места на обкладках, ток прекратится, напряжение станет максимальным и равным таковому источника.

Экспонента увеличения энергии в конденсаторе изображена на рисунке. Сама формула зависимости нарастания напряжения от времени заряда имеет следующий вид:

где Uс – электродвижущая сила источника, t — время заряда, τ — постоянная времени, равная R*C (R — сопротивление).

За время τ зарядка конденсатора дойдет до (1 — 1/e)*100% ≈ 63% от U.

За 3τ — до (1 — 1/e 3 )*100% ≈ 95% от U.

За 5τ — до (1 — 1/e 5 )*100% ≈ 99% от U.

Время заряда конденсатора точно до уровня напряжения источника длится бесконечно долго.

Из вышеприведенной формулы вычисления напряжения можно вывести расчет времени зарядки накопителя до определенных показателей:

Источник