Меню

Схема закон ома для переменного тока

Закон Ома для переменного тока

После открытия в 1831 году Фарадеем электромагнитной индукции, появились первые генераторы постоянного, а после и переменного тока. Преимущество последних заключается в том, что переменный ток передается потребителю с меньшими потерями.

При увеличении напряжения в цепи, ток будет увеличиваться аналогично случаю с постоянным током. Но в цепи переменного тока сопротивление оказывается катушкой индуктивности и конденсатор. Основываясь на этом, запишем закон Ома для переменного тока: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

закон Ома для переменного токагде

  • I [А] – сила тока,
  • U [В] – напряжение,
  • Z [Ом] – полное сопротивление цепи.

В общем случае полное сопротивление цепи переменного тока (рис. 1) состоит из активного (R [Ом]), индуктивного, и емкостного сопротивлений. Иными словами, ток в цепи переменного тока зависит не только от активного омического сопротивления, но и от величины емкости (C [Ф]) и индуктивности (L [Гн]). Полное сопротивление цепи переменного тока можно вычислить по формуле:

полное сопротивление цепи переменного токагде

  • индуктивное сопротивление— индуктивное сопротивление, оказываемое переменному току, обусловленное индуктивностью электрической цепи, создается катушкой.
  • емкостное сопротивление— емкостное сопротивление, создается конденсатором.

Полное сопротивление цепи переменного тока можно изобразить графически как гипотенузу прямоугольного треугольника, у которого катетами являются активное и индуктивное сопротивления.

Рис.1. Треугольник сопротивлений

треугольник сопротивлений

Учитывая последние равенства, запишем формулу закона Ома для переменного тока:

Закон Ома для переменного тока– амплитудное значение силы тока.

Последовательная электрическая цепь

Рис.2. Последовательная электрическая цепь из R, L, C элементов.

Из опыта можно определить, что в такой цепи колебания тока и напряжения не совпадают по фазе, а разность фаз между этими величинами зависит от индуктивности катушки и емкости конденсатора:

Цепь переменного тока состоит из последовательно соединенных конденсатора (емкостью С), катушки индуктивности (L) и активного сопротивления (R). На зажимы цепи подается действующее напряжение (U), частота которого ν. Чему равно действующее значение силы тока в цепи?

Источник

Закон Ома для переменного тока

Чтобы правильно подключить нагрузку, создать защитную схему и решить другие задачи в электротехнике применяют закон Ома для переменного тока. Созданные на основе базовых правил формулы удобны для быстрого вычисления основных параметров: силы тока, напряжения, сопротивления. В данной публикации рассматриваются переменные сигналаы, поэтому особыми дополнениями учтены частотные зависимости.

Корректность теоретических знаний можно подтвердить опытным путем

Закон Ома для участка цепи

По классической формулировке зависимость электрических параметров описывают следующим образом: ток на участке цепи (I) прямо пропорционален разнице потенциалов между контрольными точками (напряжению, U) и обратно – сопротивлению (R). Записать приведенное определение можно с применением типовых обозначений:

«Магический» треугольник поможет запомнить основные формулы

К сведению. Для расчета берут значения величин в стандартных единицах измерения: напряжение – вольты (В), электрическое сопротивление – омы (Ом), сила тока – амперы (А).

Эти выражения действительны для любого токопроводящего участка схемы. Пример с резистором, через который пропускается постоянный ток, можно использовать для демонстрации элементарного алгоритма вычислений:

  • исходные данные: R = 25 Ом, U = 8 B;
  • для расчета тока используют приведенную формулу: I = U/ R = 8/ 25 = 0,32 А;
  • если известен ток (I = 1,5 А) и сопротивление (R = 15 Ом), без вольтметра можно узнать напряжение на выводах резистора: U = I *R = 1,5 * 15 = 22,5 В.

Рассмотренные сведения применяют для коррекции электрических параметров. Так, если нужно увеличить напряжение, выбирают сопротивление с большим номиналом. Одновременно обеспечивают стабилизацию тока. Если построить диаграмму с измеренными значениями тока и напряжения по вертикальной и горизонтальной оси, график получится в виде прямой линии. Эта форма подтверждает отсутствие активных составляющих процесса.

Вольтамперная характеристика

В приведенном на рисунке примере R1>R2. Для прохождения сильного тока приходится увеличивать напряжение либо уменьшать сопротивление контрольного участка.

Закон Ома для полной цепи

В реальных условиях нужно учитывать сопротивление источника тока (Rи). В этой ситуации действуют рассмотренные выше принципы. Однако базовую формулу нужно изменить следующим образом:

I = E/ (R + Rи), где E – это электродвижущая сила (ЭДС) аккумулятора. После преобразования можно получить выражение:

Закон Ома для цепи переменного тока

При подключении нагрузки к такому источнику следует учитывать наличие в цепи компонентов с реактивными составляющими электрического сопротивления, конденсаторов и катушек индукции. Закон Ома для цепей переменного тока действует исключительно для амплитудных и эффективных значений напряжения и тока.

Распределение фаз в цепи с активным сопротивлением

В представленной на рисунке схеме реактивные составляющие отсутствуют. Для этого случая векторы тока и напряжения совпадают по фазе. Расчеты с активным сопротивлением можно выполнять с применением рассмотренных выше формул.

Индуктивная и емкостная нагрузки

При подключении элементов с реактивными характеристиками угол между векторами составляет 90°. В схеме с индуктивностью (емкостью) ток будет отставать от напряжения по фазе либо опережать соответственно. Для расчета напряжения можно применять следующие формулы (w – циклическая частота):

  • UL = I * w*L;
  • UC = I/ (w*C);
  • ХL = w*L;
  • XC = 1/(w*C).

Для полной цепи надо учесть суммарное значение сопротивления – Z. В следующем перечне приведены методы вычислений при наличии в цепи типовых комбинаций пассивных компонентов:

  • резистор и катушка индуктивности (последовательное соединение): I = U/ √(R2 + (w*L)2);
  • конденсатор с емкостью С и резистор: I = U/√(R2 + (1/w*C)2);
  • цепочка RLC: I = U/√(R2 + (w*L + 1/w*L)2).

Сдвиг фаз можно представить следующими выражениями:

  • tg ϕ = (UL — UC)/ UR = (ХL — XC)/R;
  • cos ϕ = UR/U = R/ Z.

Для расчета активной мощности (Pа) в нагрузке применяют действующие значения тока (Iд) и напряжения (Uд):

Pа = Iд * Uд * cos ϕ.

Последний множитель фактически определяет количество потребляемой электроэнергии. Остаток расходуется на обменные процессы, нагрев соединительных проводов.

К сведению. Производители трансформаторов, электродвигателей и других мощных нагрузок с выраженными реактивными характеристиками приводят значение cos ϕ в сопроводительной документации. По этому коэффициенту можно сделать правильный вывод об энергетической эффективности оборудования. Соответствующую поправку делают при расчете цепей питания, чтобы обеспечить достаточное поперечное сечение проводников для предотвращения чрезмерного повышения температуры и возникновения аварийных ситуаций.

Отдельно следует рассмотреть резонанс. Это явление сопровождается резким увеличением силы тока в цепи при совпадении частоты сигнала (wc) с частотой созданного колебательного контура (wк). В подобной ситуации не исключено повреждение компонентов схемы и проводников.

Читайте также:  Как определить плотность тока в медном проводнике

Обозначенные условия создает увеличение сопротивления в цепи, которое обеспечивается равенством реактивных составляющих:

ХL = w*L = XC = 1/(w*C).

Частоты совпадают в следующем случае (последовательное соединение):

Напряжения на конденсаторе и катушке становятся равными по амплитуде, но противоположными по фазе. Ток определяется с учетом базовых определений закона Ома:

I = U/Z = U/ √ R2 + (2π * w * L — 1/2π * w * C)2.

Трактовка и пределы применимости закона Ома

Для корректных расчетов следует учесть ограниченность действия рассмотренных методик. Законом Ома установлены базовые зависимости, которые сохраняются в сравнительно узком частотном диапазоне. Подразумевается применение компонентов с «идеальными» параметрами. Паразитные характеристики, взаимное влияние и отдельные внешние воздействия не учитываются.

Сверхпроводимость

В следующем списке приведены примеры, когда формулы закона Ома не описывают физические процессы с достаточной точностью:

  • При значительном понижении температуры уменьшается амплитуда колебаний компонентов молекулярной решетки металлов. Это улучшает условия для прохождения заряженных частиц. На определенном уровне возникает сверхпроводимость, которая характеризуется минимальными потерями энергии в проводнике.
  • В диапазоне сверхвысоких частот следует учитывать инерционные характеристики заряженных частиц. Определенное значение приобретают поверхностные токи.
  • По мере нагрева на определенном уровне проводимость материала изменяется нелинейно, что исключает возможность применения представленных формул.
  • Высоковольтное напряжение провоцирует пробой диэлектрика.

Нелинейные элементы и цепи

Как отмечено в предыдущем разделе, калькулятор и элементарные технологии расчета в отдельных ситуациях непригодны.

График изменения сопротивления

На рисунке приведены результаты эксперимента с типовой лампой накаливания. Видно, что при увеличении напряжения сопротивление изменяется нелинейно. Данное явление сопряжено с нагревом вольфрамовой нити. Для подобных ситуаций необходимы сведения о значениях проводимости в отдельных точках графика. Например, можно использовать тангенс угла α по отношению к горизонтальной оси. В этом случае статическое электрическое сопротивление для определенного места (Rст) рассчитывают по формуле:

Rст = Uα/Iα = tg α.

Также применяют значение, эквивалентное минимальному изменению тока и напряжения (ΔI и ΔU соответственно). По этой методике Rст = ΔU / ΔI = tg ϕ, где ϕ – угол между касательной в контрольной точке и осью абсцисс.

Нелинейные элементы

На первом рисунке показана вольтамперная характеристика серийного диода. График подтверждает смещение полупроводникового перехода в зависимости от приложенного напряжения. Хорошо видно, как на горизонтальном участке существенное изменение потенциала сопровождается незначительной реакцией силы тока.

Второй рисунок демонстрирует зависимость характеристик от уровня светового потока (Ф). Стандартный фотодиод функционирует в области обратного смещения p-n перехода. Это наглядный пример двухполюсного радиотехнического компонента с нелинейными параметрами.

На последнем рисунке изображена вольтамперная характеристика тиристора. Работой этого устройства управляют с помощью дополнительной области, созданной в полупроводниковом переходе. Аналогичные по сути решения применяют в транзисторах.

Цепи, которые будут содержать подобные компоненты, называют нелинейными. При расчетах учитывают особенности ВАХ, время переключения. Определенное значение имеет класс изделия. К безынерционным относят элементы с быстрой реакцией на управляющие воздействия.

Видео

Источник

Описание закона Ома для электрической цепи переменного тока

Закон ома для переменного тока

Фундаментальным положением, описывающим зависимость тока, сопротивления и напряжения друг от друга является закон Ома для цепи переменного тока. Основное его отличие от одноимённого положения для участка цепи заключается в учёте полного сопротивления. Эта величина зависит от активной и реактивной составляющей линии, то есть учитывает ёмкость и индуктивность. Поэтому и расчёт параметров для полной цепи по сравнению с участком выполнить будет сложнее.

  • Основные понятия
    • Определение напряжения
    • Импеданс цепи
  • Закон для переменного тока
  • Использование формулы

Основные понятия

Вся наука электротехника построена на оперировании такими понятиями, как заряд и потенциал. Кроме этого, важными явлениями в цепи являются электрические и магнитные поля. Для того чтобы разобраться в сущности закона Ома, необходимо понимать, что представляют собой эти величины, и от чего зависят те или иные электромагнитные процессы.

Закон ома кто открыл

Электричеством называется явление, обусловленное взаимодействием зарядов между собой и их движением. Это слово было введено в обиход Уильямом Гилбертом в 1600 году после открытия им способности некоторых тел наэлектризовываться. Так как свои эксперименты он проводил с кусочками янтаря, то и свойство притягивать или отталкивать ими другие вещества им было названо «янтарностью», что в переводе с греческого звучит как электричество.

В дальнейшем различными ученными, такими как Эрстед, Ампер, Джоуль, Фарадей, Вольт, Ленц и Ом был открыт ряд явлений. Благодаря их исследованиям в обиходе появились понятия: электромагнитная индукция и поле, гальванический элемент, ток и потенциал. Ими была открыта связь между электричеством и магнетизмом, что привело к появлению науки, изучающей теорию электромагнитных явлений.

В 1880 году русский инженер Лачинов теоретически указал, какие условия необходимы для передачи электричества на расстояния. А через 8 лет Генрих Рудольф Герц во время экспериментов зарегистрировал электромагнитные волны.

Таким образом было установлено, что электрические заряды способны создавать вокруг себя электрическое излучение. Условно их разделили на частицы с положительным и отрицательным знаком заряда. Было установленно, что одноимённого знака заряды притягиваются, а разноимённого — отталкиваются. Для возникновения их движения к физическому телу необходимо приложить какую-либо энергию. При их перемещении возникает магнитное поле.

Электрические заряды

Свойство материалов обеспечивать движение зарядов получило название проводимость, а величина, обратная ей, — сопротивление. Способность пропускать через себя заряды зависит от структуры кристаллической решётки вещества, её связей, дефектов и содержания примесей.

Определение напряжения

Учёными было установлено, что существует два вида перемещения зарядов — хаотичное и направленное. Первый тип не приводит ни к каким процессам, так как энергия находится в сбалансированном состоянии. Но если к телу приложить силу, заставляющую заряды следовать в одну сторону, то возникнет электрический ток. Существует два вида:

  1. Постоянный — сила и направление которого остаются постоянными во времени.
  2. Переменный — имеющий разную величину в определённой точке времени и изменяющий своё движение, при этом повторяющий через равные интервалы времени своё изменение (цикл). Эта переменчивость описывается по гармоническому закону синуса или косинуса.

Переменный ток

Заряд характеризуется таким понятием, как потенциал, то есть количеством энергии, которой он обладает. Необходимая сила для перемещения заряда из одной точки тела в другую называется напряжением.

Определяется она относительно изменения потенциала заряда. Сила тока определяется отношением количества заряда, прошедшего через тело за единицу времени, к величине этого периода. Математически она описывается выражением: Im = ΔQ/ Δt, измеряется в амперах (A).

Читайте также:  Электрическая цепь с переменным током

Относительно переменного сигнала вводится дополнительная величина — частота f, которая определяет цикличность прохождения сигнала f = 1/T, где T — период. За её единицу измерения принят герц (Гц). Исходя из этого синусоидальный ток выражается формулой:

Закон ома для цепи переменного тока

I = Im * sin (w*t+ Ψ), где:

  • Im — это сила тока в определённый момент времени;
  • Ψ — фаза, определяемая смещением волны тока по отношению к напряжению;
  • w — круговая частота, эта величина зависит от периода и равна w = 2*p*f.

Напряжение же характеризуется работой, которую совершает электрическое поле для переноса заряда из одной точки в другую. Определяется она как разность потенциалов: Um = φ1 — φ2. Затрачиваемая работа же складывается из двух сил: электрических и сторонних, называется электродвижущей (ЭДС). Зависит она от магнитной индукции. Потенциал же равен отношению энергии взаимодействия заряда окружающего поля к значению его величины.

Поэтому для гармонического изменения сигнала значение напряжения выражается как:

U = Um * sin (w*t + Ψ).

Где Um — амплитудное значение напряжения. Измеряется переменное напряжение в вольтах (В).

Импеданс цепи

Каждое физическое тело имеет своё сопротивление. Обусловлено оно внутренним строением вещества. Характеризуется эта величина свойством проводника препятствовать прохождению тока и зависит от удельного электрического параметра. Определяется по формуле: R = ρ*L/S, где ρ — удельное сопротивление, являющееся скалярной величиной, Ом*м; L — длина проводника; м; S — площадь сечения, м 2 . Таким выражением определяется постоянное сопротивление, присущее пассивным элементам.

 закон ома для электрической цепи

В то же время импеданс, полное сопротивление, находится как сумма пассивной и реактивной составляющей. Первая определяется только активным сопротивлением, состоящим из резистивной нагрузки источника питания и резисторов: R = R0 + r. Вторая находится как разность между ёмкостным и индуктивным сопротивлением: X = XL-Xc.

Если в электрическую цепь поместить идеальный конденсатор (без потерь), то после того, как на него поступит переменный сигнал, он зарядится. Ток начнёт поступать далее, в соответствии с периодами его заряда и разряда. Количество электричества, протекающее в цепи, равно: q = C * U, где С — ёмкость элемента, Ф; U — напряжение источника питания или на обкладках конденсатора, В.

Так как скорости изменения тока и напряжения прямо пропорциональны частоте w, то будет справедливым следующее выражение: I = 2* p * f * C * U. Отсюда получается, что ёмкостной импеданс вычисляется по формуле:

Xc = 1/ 2* p * f * C = 1/ w * C, Ом.

 закон ома для электрической цепи переменного тока

Индуктивное же сопротивление возникает вследствие появления в проводнике собственного поля, называемого ЭДС самоиндукции EL. Зависит она от индуктивности и скорости изменения тока. В свою очередь индуктивность зависит от форм и размеров проводника, магнитной проницаемости среды: L =Ф / I, измеряется в теслах (Тл). Поскольку напряжение, приложенное к индуктивности, по своей величине равно ЭДС самоиндукции, то справедливо EL = 2* p * f * L * I. При этом скорость изменения тока пропорциональна частоте w. Исходя из этого индуктивное сопротивление равно:

Таким образом, импеданс цепи рассчитывается как: Z = (R 2 +(X c-X l) 2 ) ½ , Ом.

То есть он зависит от частоты переменного сигнала, индуктивности и ёмкости цепи, а также активного сопротивления источника и электрической линии. При этом в качестве реактивной составляющей чаще всего выступают паразитные величины.

Закон для переменного тока

Классический закон был открыт физиком из Германии Симоном Омом в 1862 году. Проводя эксперименты, он обнаружил связь между током и напряжением. В результате ученый сформулировал утверждение, что сила тока пропорциональна разности потенциалов и обратно пропорциональна сопротивлению. Если в электрической цепи ток уменьшится в несколько раз, то и напряжение в ней станет меньше на столько же.

Математически закон Ома был описан как:

 закон ома

Это выражение справедливо как для синусоидального, так и для постоянного тока. Но такая зависимость величин соответствует идеальной ситуации, в которой не учитываются паразитные составляющие и сопротивление источника тока. В случае же гармоничного сигнала на его прохождение влияет частота, из-за присутствия ёмкостной и индуктивной составляющей в электрической линии.

Поэтому закон Ома для переменного тока описывается формулой:

  • I — сила переменного тока, А;
  • U — разность потенциалов, В;
  • Z — полное сопротивление цепи, Ом.

Полное сопротивление зависит от частоты гармоничного сигнала и вычисляется по следующей формуле:

Z = ((R+r) 2 + (w*L — 1/w*C) 2 ) ½ = ((R+r) 2 +X 2 ) ½ .

 закон ома что это

При прохождении тока переменной величины электромагнитное поле совершает работу, при этом из-за сопротивления, оказываемого в цепи, выделяется тепло. То есть электрическая энергия переходит в тепловую. Мощность же пропорциональна току и напряжению. Формула, описывающая мгновенное значение, выглядит как: P = I*U.

В то же время для переменного сигнала необходимо учитывать амплитудную и частотную составляющую. Поэтому:

P = I *U*cosw*t*cos (w*t+ Ψ), где I, U — амплитудные значения, а Ψ — фазовый сдвиг.

Закон ома формула

Для анализа процессов в электрических цепях переменного тока вводится понятие комплексного числа. Связанно это со смещением фаз, появляющихся между током, и разностью потенциалов. Обозначается это число латинской буквой j и состоит из мнимой Im и вещественной Re частей.

Так как на активном сопротивлении происходит трансформирование мощности в тепло, а на реактивном она преобразуется в энергию электромагнитного поля, возможны её переходы из любой формы в любую. Можно записать: Z = U / I = z * e j* Ψ.

Отсюда полное сопротивление цепи: Z = r + j * X, где r и x — соответственно активное и реактивное сопротивление. Если же сдвиг фаз принимается равный 90 0 , то комплексное число можно не учитывать.

Использование формулы

Использование закона Ома позволяет построить временные характеристики различных элементов. С помощью него несложно рассчитать нагрузки для электрических схем, выбрать нужное сечение проводов, правильно подобрать защитные автоматы и предохранители. Понимание закона даёт возможность применить правильный источник питания.

Закон ома для переменного тока формула

Использование Закона Ома можно применить на практике для решения задачи. Например, пускай есть электрическая линия, состоящая из последовательно соединённых элементов, таких как: ёмкость, индуктивность и резистор. При этом ёмкость C = 2*Ф, индуктивность L=10 мГн, а сопротивление R = 10 кОм. Требуется вычислить импеданс полной цепи и рассчитать силу тока. При этом блок питания работает на частоте равной f = 200 Гц и выдаёт сигнал с амплитудой U = 12 0 В. Внутреннее сопротивление источника питании составляет r = 1 кОм .

Читайте также:  Трансформаторы тока малых значений

Вначале необходимо рассчитать реактивное сопротивление в цепи переменного тока. Так, ёмкостное сопротивление находится из выражения: Xc = 1/ (2 *p *F*C) и на частоте 200 Гц оно равно: Xc = 588 Ом.

Индуктивное сопротивление находится из выражения: XL = 2*p*F* L. На f = 200 Гц и оно оставляет: X*L = 1,25 Ом. Полное сопротивление RLC цепи будет: Z = ((10 *10 3 +1*10 3 ) 2 + (588−1,25) 2 ) ½ = 11 кОм.

Разность потенциалов, изменяющаяся по гармоническому закону синуса, будет определяться: U (t) = U * sin (2* p *f*t) = 120*sin (3,14*t). Ток будет равен: I (t) = 10* 10 −3 + sin (3,14*t+p/2).

По рассчитанным данным можно построить график тока, соответствующий частоте 100 Гц. Для этого в декартовой системе координат отображается зависимость тока от времени.

Следует отметить, закон Ома для переменного сигнала отличается от использующегося для классического расчёта лишь учётом полного сопротивления и частоты сигнала. А учитывать их важно, так как любой радиокомпонент обладает как активным, так и реактивным сопротивлением, что в итоге сказывается на работе всей схемы, особенно на высоких частотах. Поэтому при проектировании электронных конструкций, в частности импульсных устройств, для расчётов используется именно полный закон Ома.

Фотография Валерия Александровича

Ладыжин Валерий

Источник



Закон Ома.

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / R где I — сила тока, измеряемая в Амперах, (A)
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × U где P — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока, I= U/R P/U √(P/R)
Напряжение, U= I×R P/I √(P×R)
Сопротивление, R= U/I P/I² U²/P
Мощность, P= I×U I²×R U²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.

Импеданс, полное сопротивление при последовательном включении емкости и индуктивности.

Последовательное включение R, L, C

Импеданс, полное сопротивление при параллельном включении емкости и индуктивности.

Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, C При параллельном включении R, L, C
Z=√(R 2 +(ωL-1/ωC) 2 ) Z=1/ √(1/R 2 +(1/ωL-ωC) 2 )
где,
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / Z где I — сила переменного тока, измеряемая в Амперах, (A)
U — напряжение переменного тока, измеряемое в Вольтах, (V)
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω)
Сила тока, I= U/Z P/(U× Cos(φ)) √(P/Z)
Напряжение, U= I×Z P/(I× Cos(φ)) √(P×Z)
Полное сопротивление, импеданс Z= U/I P/I² U²/P
Мощность, P= I²×Z I×U× Cos(φ) U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:

Закон Ома для постоянного тока
Закон Ома для постоянного тока
Закон Ома для переменного тока
Закон Ома для переменного тока
Расчет полного сопротивления (импеданса)
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)
Расчет коэффициента мощности Cos(φ)

Источник