Биполярный транзистор в схеме с общей базой: Методические указания к лабораторной работе № 3
Страницы работы
Содержание работы
Лабораторная работа № 3
Биполярный транзистор в схеме с ОБ
1. Цель и содержание работы
Целью работы является изучение принципа действия, основных параметров и статических вольтамперных характеристик (ВАХ) биполярного транзистора в схеме с общей базой (ОБ). В работе снимаются входные, выходные и передаточные ВАХ германиевых и кремниевых транзисторов. По характеристикам определяется основные параметры.
1. Характеристики и параметры биполярных транзисторов
Биполярный транзистор представляет собой трёхэлектродный полупроводниковый прибор на основе p-n-p или n-p-n структуры, предназначенный для усиления и генерации электрических сигналов. Процессы в p-n-p и n-p-n структурах протекают аналогично. Например, в р-п-р структуре n-область, разделяющая p-области, называется базой, одна из p-областей – эмиттером, а другая – коллектором (рис. 3.1).
В основном рабочем режиме – активном, эмиттерный переход смещен в прямом направлении, коллекторный – обратном. Полярности внешних напряжений в схеме с ОБ для p-n-p или n-p-n транзисторов показаны на рис. 3.2. Эмиттер легирован значительно сильнее, чем база, поэтому при включении его в прямом направлении ток эмиттера в p-n-p- транзисторе представляет собой ток инжекции дырок в базу. Инжектированные дырки диффундируют к коллектору. Так как ширина базы много меньше диффузионной длины дырок , то большая часть дырок доходит до обратно смещенного коллектора, захватывается его полем и переносится в коллектор, образуя коллекторный ток.
Рис. 3.1. Структура биполярного p-n-p транзистора
Рис. 3.2. Полярности на p-n-p (а) и n-p-n (б) транзисторах для нормального включения
Поскольку коллектор включен в обратном направлении, то его ток определяется только дырками, дошедшими из эмиттера, и почти не зависят от напряжения на коллекторе. Коллектор обладает большим выходным сопротивлением и по отношению к внешней цепи является генератором тока . Высокое выходное сопротивление коллекторного перехода позволяет включить в его цепь достаточно большое сопротивление нагрузки, на котором выделяется мощность, значительно больше мощности, затраченной во входной цепи. Энергия источника питания с помощью транзистора преобразуется в энергию электрического сигнала.
2.1. Коэффициент передачи тока
При = 0 через коллекторный переход идет некоторый начальный обратный ток , обусловленный тепловой генерацией электронно-дырочных пар.
Коэффициент передачи тока показывает отношение коллекторного тока (без ) к эмиттерному.
, так как обычно (3.1)
Величина зависит от параметров базы и эмиттера, она обычно близка к единице и составляет около 0,95…..0,98.
Закон Кирхгофа для токов в транзисторе выражается соотношением
, что позволяет, используя (3.1), представить ток базы и в виде:
Основную долю базового тока составляет ток рекомбинации, пропорциональный общему избыточному заряду дырок в базе
где – время жизни дырок в базе.
На рис. 3.3 показано распределение дырок в базе для двух напряжений на коллекторном переходе. Распределение дырок в базе подчиняется уравнению непрерывности и граничным условиям Шокли у эмиттерного перехода
где — равновесная концентрация дырок в n-базе;
– собственная концентрация;
– концентрация доноров в базе.
На коллекторном переходе
Так как в нормальном режиме и , то , а . Ток дырок в базе имеет диффузионный характер, поэтому
где – площадь эмиттерного перехода.
Так как рекомбинация в тонкой базе незначительна, то
Распределение дырок в базе имеет почти линейный вид (рис.3.3)
а заряд дырок , проходящих сквозь базу, пропорционален заштрихованной на рис. 3.3 площади
Рис. 3.3. Распределение дырок в базе p-n-p транзистора
в активном нормальном режиме
Коэффициент передачи тока с учетом (4.3) и (4.4) принимает вид
Это выражение правильно передаёт зависимость коэффициента передачи от толщины базы и времени жизни дырок в ней, но не учитывает вкладов электронных токов эмиттерного и коллекторного переходов.
2.2. Вольтамперные характеристики транзистора
При включении транзистора по схеме с ОБ входным током будет ток эмиттера , выходным — ток коллектора , входным напряжением — напряжение на эмиттерном переходе , выходным — напряжение на коллекторном переходе (рис. 3.2).
Входные ВАХ показаны на рис. 3.4.а. Они почти повторяют ВАХ прямосмещенного эмиттерного перехода
где — обратный ток эмиттерного перехода.
Выходные характеристики показаны на рис. 3.4б.
Рис. 3.4. Вольтамперные характеристики транзистора в схеме с ОБ:
а) – входные; б) — выходные
При выходная ВАХ представляет собой перевернутую характеристику коллекторного перехода с током насыщения . При к нему прибавляется ток . Полный ток коллектора составляет
Источник
Работа транзистора в ключевом режиме
Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.
Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.
Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.
Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.
Рисунок 1. Входная характеристика транзистора
Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!
Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».
Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.
Как рассчитать режим работы ключевого каскада
Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.
Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.
Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.
Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.
Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.
При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).
Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.
Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.
Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»
Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.
Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».
Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.
Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.
Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.
Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.
Источник
Схема каскада с фиксированным током базы
В схеме с общим эмиттером напряжение источника сигнала подается на базу, а усиленное напряжение снимается с коллектора. Для того, чтобы правильно задать рабочую точку транзистора (обеспечить режим работы транзистора) на базу необходимо подать начальный ток iб0. Для питания цепей коллектора и базы можно использовать разные источники питания, но это экономически нецелесообразно, поэтому режим транзистора по постоянному току задают от одного источника питания.
В простейшем случае ток на базе транзистора можно задать при помощи резистора. Такой вариант задания рабочего режима транзистора называется схемой с фиксированным током базы. Она применяется только в усилителях класса A. Схема включения транзистора с общим эмиттером с фиксированным током базы приведена на рисунке 1.
Рисунок 1 Схема усилителя с фиксированным током базы
Расчет каскада всегда начинается с выхода схемы. Сначала задаются током коллектора транзистора, обычно . Чем меньше его значение, тем экономичней будет усилительный каскад и схема радиоэлектронного устройства в целом. Однако максимум усиления маломощного транзистора бывает обычно при значении коллекторного тока [3], поэтому задаются меньше этого значения, но стараются не сильно удаляться от него, чтобы не потерять усиление по мощности.
На схеме, приведенной на рисунке 1, ток задается резистором R1, а резистор R2 задает половину питания на коллекторе транзистора VT1. Выбор напряжения на коллекторе, равным половине питания усилительного каскада, связан с нелинейными искажениями на выходе схемы. При выборе напряжения больше половины питания, синусоидальное напряжение на выходе каскада будет обрезаться сверху. Это приведет к уменьшению максимального допустимого напряжения усилителя. При выборе коллекторного напряжения меньше половины питания, синусоидальное напряжение будет обрезаться снизу, что тоже приведет к снижению максимального допустимого напряжения сигнала на выходе каскада. Оптимальным является напряжение, равное половине питания схемы. При постепенном увеличении входного напряжения сигнала, синусоидальное напряжение сигнала на выходе будет одновременно ограничиваться сверху и снизу. Уровень допустимого напряжения сигнала усилительного каскада при этом будет максимальным.
Теперь можно определить значение номинала сопротивления резистора R2. Для этого воспользуемся законом Ома. Падение напряжения на резисторе R2 определим из закона Киргофа. По нему напряжение питания схемы равно сумме падений напряжения на транзисторе и резисторе R2:
Отсюда можно выразить падение напряжения на резисторе R2:
и далее по закону Ома находим сопротивление в цепи коллектора R2:
При напряжении питания 5 В и токе коллектора 2,5 мА напряжение Uкэ выбирают равным половине питания 2,5 В и сопротивление резистора R2 получится равным 1 кОм.
Аналогичным образом можно определить сопротивление в цепи базы транзистора — R1. Для этого сначала через h21э определим ток базы:
откуда определим ток базы:
И тогда сопротивление в цепи базы R1 будет равно:
Обратите внимание, что схема питания транзистора с фиксированным током базы может быть применена в любой из схем включения транзистора: с общим эмиттером, с общей базой или с общим коллектором.
В схеме с общим эмиттером входной сигнал подается на базу транзистора, как это показано на рисунке 2.
Рисунок 2 Схема с фиксированным током базы в каскаде с общим эмиттером
В высокочастотных усилителях (усилителях радиочастоты) возможен вариант, где в качестве нагрузки транзисторного каскада служит дроссель. В этом случае рассчитывать резистор R2 не нужно и схема питания транзистора с фиксированным током базы приобретает вид, показанный на рисунке 3.
Рисунок 3 Схема с фиксированным током базы в каскаде с общим эмиттером
В высокочастотных усилителях часто для преобразования входного и выходного сопротивления транзистора к стандартному значению 50 Ом используются фильтры низкой частоты с различными входным и выходным сопротивлениями. Подобный вариант усилителя с фиксированным током базы в каскаде с общим эмиттером приведен на рисунке 4.
Рисунок 4 Схема с фиксированным током базы в каскаде с общим эмиттером
При этом часть емкости входного фильтра-трансформатора сопротивления вместе с конденсатором C2 образует входная емкость транзистора. Аналогично, выходная емкость транзистора вместе с конденсатором C4 образует емкость выходной согласующей цепи. В усилителях гигагерцового диапазона вместо сосредоточенных индуктивностей и емкостей в составе согласующих устройств применяются отрезки полосковых линий.
В схеме с общей базой входной сигнал подается на эмиттер транзистора. Каскад усилителя с общей базой, реализованный по схеме питания транзистора с фиксированным током базы приведен на рисунке 5.
Рисунок 5 Схема с фиксированным током базы в каскаде с общей базой
Как легко можно увидеть, это схема питания транзистора, приведенная на рисунке 1, в которой входной сигнал подан между базой и эмиттером. Выходное напряжение снимается с резистора R2. Усилители с общей базой применяются в основном на высоких частотах, поэтому вместо резистора R2 удобнее применять дроссель, как это делалось в схеме на рисунке 3. Схема подобного усилителя приведена на рисунке 6.
Рисунок 6 Схема с фиксированным током базы в каскаде с общей базой
В схеме с общим коллектором сигнал подается на базу транзистора, но в отличие от схемы с общим эмиттером выходной сигнал снимается с коллектора транзистора. Это решение позволяет получать минимальное выходное сопротивление усилителя, поэтому чаще всего используется в качестве буферного усилителя для развязки выхода одной схемы от входа другой. Пример схемы с фиксированным током базы для транзистора, включенного с общим коллектором, приведен на рисунке 7.
Рисунок 7 Схема с фиксированным током базы в каскаде с общим коллектором
В качестве недостатка схемы питания транзистора с фиксированным током базы следует отметить нестабильность параметров. Коэффициент усиления транзистора по току может сильно меняться от экземпляра к экземпляру, изменяться от температуры или с течением времени (старение элементов схемы). Обычный разброс коэффициента усиления по току составляет (транзистор КТ315Б), а с учетом влияния температуры — . Отношение максимального значения к минимальному составляет почти 20 раз! Во столько же раз будет меняться и ток потребления. В схемах, приведенных на рисунках 2 и 5 это приведет к полной потере работоспособности, в остальных случаях приводит к изменению коэффициента усиления и перегреву транзисторов.
Для устранения указанных недостатков были разработаны специальные схемы стабилизации рабочего режима транзистора: коллекторная стабилизация и эмиттерная стабилизация режима работы транзистора. В современных микросхемах применяются дифференциальные каскады.
Дата последнего обновления файла 18.07.2018
Источник
Питание цепи базы транзистора по схеме с фиксированным током базы
В практических транзисторных схемах включения с общими эмиттером и коллектором, цепь базы питается от коллекторного напряжения Ек при помощи дополнительных элементов схемы. Наиболее простой является схема питания цепи базы с фиксированным током (рис. 9.16).
Рис. 9.16. Схема с фиксированным током базы
На схеме базовая цепь представляет собой делитель напряжения (рис. 9.17), состоящий из резистора Rб и сопротивления эмиттерного перехода rэ транзистора VT1.
Рис. 9.17. Делитель напряжения базы
Ток базы Iб, соответствующий выбранному положению рабочей точки, будет протекать через эмиттерный переход, создавая на нем падение напряжения Uбэ, которое и является исполнителем функции источника Еб. Из второго закона Кирхгофа получаем формулу, согласно которой находим напряжение источника питания коллектора транзистора:
Это напряжение питания можно найти и по другой формуле:
Сопротивление резистора Rб, соединенного с базой транзистора, можно вычислить по формуле:
где Iб — соответствует току базы в рабочей точке.
Так как напряжение источника питания транзисторного каскада Ек намного больше напряжения база-эмиттер транзистора Uбэ, справедливо упростить предыдущую формулу и записать ее так:
Недостаток данного каскада по схеме с фиксированным током базы транзистора заключается в том, что он не может работать в широком диапазоне температур, так как сопротивление эмиттерного перехода rэ очень сильно зависит от температуры. Несколько лучше в этом плане работает каскад по схеме с фиксированным напряжением базы, которую рассмотрим далее.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник