Меню

Схема измерения тока с помощью вольтметра

Схема электронного вольтметра для измерения постоянных напряжений

Для измерения токов и напряжений (разности элек­трических потенциалов) используются амперметры и вольтметры.

Это электромеха­нические или электронные приборы со стрелочным или цифровым способом отсчета. Шкалы приборов со стрелкой градуируют в значениях измеряемой величины (в вольтах или амперах).

Амперметр включается в цепь последовательно с сопротивлением нагрузки RН, т.е. говорят, что амперметр включается в разрыв цепи.

Рисунок 1 – Включение амперметра в цепь

Сопротивление амперметра RA должно быть очень малым по сравнению с полным сопротивлением измеряемой цепи. Включение амперметра не должно искажать режим работы электрической цепи.

Вольтметр включается параллельно с сопротивлением нагрузки RН.

Рисунок 2 – Включение вольтметра в цепь

Сопротивление вольтметра RV должно быть большим, чтобы не искажался режим работы электрической цепи.

В качестве вольтметров и амперметров чаще всего применяются приборы магнитоэлектрической системы, работа которых основана на взаимодействии поля постоянного магнита и поля, создаваемого током в подвижной рамке, вращающейся в магнитном поле.

Достоинства приборов магнитоэлектрической системы:

большая точность (до 0,1%);

малое влияние внешних магнитных полей;

незначительное влияние температуры;

малая потребляемая мощность;

Недостатки приборов магнитоэлектрической системы:

чувствительность к перегрузкам;

пригодны только для постоянного тока.

Рассмотрим общую структурную схему простейшего аналогового вольтметра (амперметра) для измерения постоянного напряжения (тока).

Рисунок 3 – Структурная схема простейшего аналогового вольтметра (амперметра) для измерения постоянного напряжения (тока)

Схема состоит из следующих блоков:

электромеханический преобразователь (ЭЛМП);

измерительный механизм (ИМ);

стрелочный прибор (СП).

Электромеханический преобразователь предназначен для преобразования энергии электромагнитного поля в механическую энергию.

Измерительный механизм состоит из подвижной и неподвижной частей.

Под действием тока, протекающего через обмотку измерительного механизма за счет взаимодействия магнитных полей постоянного магнита и тока в рамке создается вращающий момент, который действует на подвижную часть ИМ. Под действием механических сил, пропорциональных значению измеряемой электрической величины, подвижная часть ИМ отклоняется на некоторый угол.

Стрелочный прибор (указатель) показывает значение измеряемой величины.

Вольтметры, содержащие усилители, называются электронными. На рисунке 1 приведена схема электронного вольтметра для измерения переменного напряжения.

Рисунок 1 – Схема электронного вольтметра для измерения переменного напряжения

Входное устройство обеспечивает требуемое входное сопротивление (высокое для вольтметров), содержит делитель напряжения, который предназначен для расширения пределов измерения напряжений в сторону больших значений.

Усилитель постоянного тока предназначен для усиления сигнала до значения, необходимого для эффективной работы электромеханического преобразователя.

Электромеханический преобразователь предназначен для преобразования энергии электромагнитного поля в механическую энергию.

В зависимости от принципа действия электромеханические преобразователи делятся на: магнитоэлектрические, электромагнитные, электродинамические,

индукционные, электростатические, выпрямительные, электронные и т.д.

В качестве вольтметров чаще всего применяются приборы магнитоэлектрической системы, работа которых основана на взаимодействии поля постоянного магнита и поля, создаваемого током в подвижной рамке, вращающейся в магнитном поле.

К достоинствам приборов магнитоэлектрической системы относятся: большая точность (до 0,1%), высокая чувствительность, малое влияние внешних магнитных полей, незначительное влияние температуры, малая потребляемая

мощность, равномерная шкала.

Недостатками приборов магнитоэлектрической системы являются: чувствительность к перегрузкам и пригодность только для постоянного тока.

Измерительный механизм состоит из подвижной и неподвижной частей. Под действием тока, протекающего через обмотку измерительного механизма, за счет взаимодействия магнитных поле постоянного магнита и тока в рамке создается вращающий момент, который действует на подвижную часть измерительного механизма. Подвижная часть под действием механических сил, пропорциональных значению измеряемой электрической величины, отклоняется на некоторый угол.

Стрелочный прибор (указатель) показывает значение измеряемой величины.

Источник

Электротехника

суббота, 5 февраля 2011 г.

Измерение тока вольтметром.

В статье «вольт амперная характеристика солевого расствора» для измерения тока цепи использовался вольтметр подключённый параллельно резистору с сопротивлением 1 кОм. Если вместо резистора с сопротивлением 1 кОм подключить резистор с сопротивлением 1 Ом то зная сопротивление элемента, напряжение на нём и то что во всех элементах цепи ток будет одинаковым так как они соединены последовательно учитывая закон Ома можно сделать вывод что ток в цепи будет равен напряжению на резисторе с сопротивлением 1 Ом. Используя переключатель, резисторы, вольтметр и провода можно собрать амперметр по схеме:

Переключив переключатель на резистор R2 можно измерять ток в амперах, переключив на R1 в миллиамперах. На схеме учитывается что сопротивление вольтметра равно бесконечности (проводимость равна нулю) т.е. вольтметр можно заменить разрывом цепи. На изображении ниже приведена фотография собранной схемы для измерения тока вольтметром.

амперметр из вольтметра

Используя многопозиционный переключатель и резисторы с другими значениями сопротивлений можно измерять токи с другими множителями но не стоит выбирать резисторы со слишком большим сопротивлением так как при этом на показания вольтметра будет влиять проводимость самого вольтметра. При выборе резистора со слишком низким сопротивлением показания вольтметра также будут не точными из за влияния сопротивления проводов и других паразитных сопротивлений. Если в схеме на рисунке 1 вместо вольтметра подключить осциллограф то таким устройством можно будет определять форму тока в схемах. Осциллограф как и вольтметр обладает большим сопротивлением (в идеале равным бесконечности) и измеряет только форму напряжения на элементах к которым он подсоединяется последовательно поэтому для определения формы тока необходимо подключать в цепь схемы измерительный резистор с малым отклонением сопротивления для более точых измерений. В схеме для измерения тока вольтметром (рисунок 1) также для получения более точных значений тока необходимо использовать более точные резисторы.

Читайте также:  Зависимость силы тока от напряжения электрическое сопротивление проводников 8 класс тест ответы

Источник

Как измерять напряжение вольтметром

Вольтметр – это измерительный прибор, который предназначен для измерения напряжения постоянного или переменного тока в электрических цепях.

Вольтметр подключается параллельно к выводам источника напряжения с помощью выносных щупов. По способу отображения результатов измерений вольтметры бывают стрелочные и цифровые.

Цифровые и стрелочные вольтметры

Величина напряжения измеряется в Вольтах, обозначается на приборах буквой В (в русском языке) или латинской буквой V (международное обозначение).

Обозначение вольтметра на схемах

На электрических схемах вольтметр обозначается латинской буквой V, обведенной окружностью, как показано на фотографии.

Напряжение тока бывает постоянное и переменное. Если напряжение источника тока переменное, то перед значением ставится знак «

«, если постоянного, то знак ««.

Например, переменное напряжение бытовой сети 220 Вольт кратко обозначается так:

220 V. На батарейках и аккумуляторах при их маркировке знак «» часто опускается, просто нанесено число. Напряжение бортовой сети автомобиля или аккумулятора обозначается так: 12 В или 12 V, а батарейки для фонарика или фотоаппарата: 1,5 В или 1,5 V. На корпусе в обязательном порядке наносится маркировка возле положительного вывода в виде знака «+«.

Полярность переменного напряжения изменяется во времени. Например, напряжение в бытовой электропроводке изменяет полярность 50 раз в секунду (частота изменения измеряется в Герцах, один Герц равен одному изменению полярности напряжения в одну секунду).

Полярность постоянного напряжения во времени не меняется. Поэтому для измерения напряжения переменного и постоянного тока требуются разные измерительные приборы.

Существуют универсальные вольтметры, с помощью которых можно измерять как переменное, так и постоянное напряжение без переключения режимов работы, например, вольтметр типа Э533.

Как измерять напряжение в электропроводке бытовой сети

Внимание! При измерении напряжения величиной выше 36 В недопустимо прикосновение к оголенным провода,так как это может привести к поражению электрическим током!

Согласно требованиям ГОСТ 13109-97 действующее значение напряжения в электрической сети должно быть 220 В ±10%, то есть может изменяться в пределах от 198 В до 242 В. Если в квартире стали тускло гореть лампочки или часто перегорать, стала нестабильно работать бытовая техника, то для принятия мер, требуется сначала измерять значение напряжения в электропроводке.

Приступая к измерениям, необходимо подготовить прибор: – проверить надежность изоляции проводников с наконечниками и щупов; – установить переключатель пределов измерений в положение измерения переменного напряжения не менее 250 В; Положение переключателей вольтметра при измерении напряжения 220 В

– вставить разъемы проводников в гнезда прибора ориентируясь по надписям возле них;

Подключение поводов к измерительному прибору

– включить измерительный прибор (если необходимо).

Как видно на картинке, в тестере выбран предел измерения переменного напряжения 300 В, а в мультиметре 700 В. Во многих моделях тестеров, нужно установить в требуемое положение сразу несколько переключателей. Род тока (

или –), вид измерений (В, А или Омы) и еще вставить концы щупов в нужные гнезда.

В мультиметре конец щупа черного цвета вставлен в гнездо COM (общее для всех измерений), а красного в V, общий для изменения постоянного и переменного напряжения, тока, сопротивления и частоты. Гнездо, обозначенное ma , используются для измерения малых токов, 10 А при измерении тока достигающего 10 А.

Внимание! Измерение напряжения, когда штекер вставлен в гнездо 10 А выведет прибор из строя. В лучшем случае перегорит вставленный внутри прибора предохранитель, в худшем придется покупать новый мультиметр. Особенно часто допускают ошибки при использовании приборов для измерения сопротивления, и, забыв переключить режим, измеряют напряжение. Встречал не один десяток таких неисправных приборов, с горелыми резисторами внутри.

После проведения всех подготовительных работ можно приступать к измерению. Если Вы включили мультиметр, а на индикаторе не появились цифры, значит, либо в прибор не установлена батарейка или она уже выработала свой ресурс. Обычно в мультиметрах применяется батарейка типа «Крона», напряжением 9 В, срок годности которой один год. Поэтому, даже если прибор не использовался долгое время, батарейка может быть неработоспособна. При эксплуатации мультиметра в стационарных условиях целесообразно вместо кроны использовать адаптер

Вставляете концы щупов в розетку или прикасаетесь ними к проводам электропроводки.

Как снимать показания вольтметра со шкалы стрелочного тестера

Мультиметр сразу покажет напряжение в сети, а вот в стрелочном тестере показания надо еще уметь прочитать. На первый взгляд, кажется, что сложно, так как много шкал. Но если присмотреться, то становится ясно, по какой шкале считывать показания прибора. На рассматриваемом приборе типа ТЛ-4 (который безотказно мне служит более 40 лет!) есть 5 шкал.

Читайте также:  Как буквой обозначается мощность электрического тока

Верхняя шкала используется для снятия показаний, когда переключатель стоит в положениях кратных 1 (0,1, 1, 10, 100, 1000). Шкала, расположенная чуть ниже, кратных 3 (0,3, 3, 30, 300). При измерениях напряжения переменного тока величиной 1 В и 3 В, нанесены еще 2 дополнительные шкалы. Для измерения сопротивления имеется отдельная шкала. Аналогичную градуировку имеют все тестеры, но кратность может быть любая.

Так как предел измерений был выставлен

300 В, значит, отсчет нужно производить по второй шкале с пределом 3, умножив показания на 100. Цена маленького деления равна 0,1, следовательно, получается 2,3 + стрелка стоит посередине между штрихами, значит, берем значение показаний 2,35×100=235 В.

Получилось, что измеренное значение напряжения составляет 235 В, что в пределах допустимого. Если в процессе измерений наблюдается постоянное изменение значения цифр младшего разряда, а у тестера стрелка постоянно колеблется, значит, имеются плохие контакты в соединениях электропроводки и необходимо провести ее ревизию.

Как измерять напряжение батарейки
аккумулятора или блока питания

Так как напряжение источников постоянного тока обычно не превышает 24 В, то прикосновение к клеммам и оголенным проводам не опасно для человека и особых мер безопасности соблюдать не требуется.

Для того, чтобы оценить годность батарейки, аккумулятора или исправность блока питания требуется измерять напряжение на их выводах. Выводы у круглых батареек находятся по торцам цилиндрического корпуса, положительный вывод обозначен знаком «+».

Измерение стрелочным тестером напряжения батарейки

Измерение напряжения постоянного тока практически мало чем отличается от измерения переменного. Нужно просто переключить прибор в соответствующий режим измерения и соблюдать полярность подключения.

Положение переключателя в мультиметре для измерения напряжения

Величина напряжения, которое создает батарейка обычно нанесена на ее корпусе. Но даже если результат измерений показал достаточное напряжение, это еще не говорит о том, что батарейка хорошая, так как измерена ЭДС (электро движущая сила), а не емкость батарейки, от которой зависит продолжительность работы изделия, в которое она будет установлена.

Нагрузка для проверки емкости батареек

Для более точной оценки емкости батарейки нужно напряжение измерять, подсоединив к ее полюсам нагрузку. В качестве нагрузки для батарейки 1,5 В хорошо подходит лампочка накаливания для фонарика, рассчитанная на напряжение 1,5 В. Для удобства работы нужно припаять к ее цоколю проводники.

Если напряжение под нагрузкой снижается менее, чем на 15%, то батарейка или аккумулятор вполне пригодны для эксплуатации. Если нет измерительного прибора, то можно судить о годности к дальнейшей эксплуатации батарейки по яркости свечения лампочки. Но такая проверка не может гарантировать продолжительность работы батарейки в устройстве. Она лишь свидетельствует, что в настоящее время батарейка еще пригодна к эксплуатации.

Источник



Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Основы электроники” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Измерение тока. Амперметр.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Амперметр.

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи ?

Важным параметром этого прибора является его внутреннее сопротивление r_А . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Читайте также:  Параллель жалғанған екі су қыздырғыш элементтердің әрқайсысындағы ток күші 5 а

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Шунтирование амперметра

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

Измерение тока.

В данной задаче нам необходимо измерить ток I . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно ( R = \frac ). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить ?

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения. Вольтметр.

Прибор, предназначенный для измерения напряжения называется вольтметр. И, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Вольтметр.

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с R_2 . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток ( I_B = 0 ), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку r_В имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток. В связи с этим напряжение на резисторе R_2 уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример:

Измерение напряжения при помощи вольтметра.

Здесь мы добавили в цепь добавочное сопротивление R_3 . Перед нами стоит задача измерить напряжение на резисторе R_2:\medspace U_2 = R_2\medspace I_2 . Давайте определим, какой результат при таком включении выдаст нам вольтметр:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: U_В = \frac . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра!

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Источник