Меню

Система уравнений максвелла справедлива для переменного тока

Уравнения Максвелла

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

  1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
  2. В дальнейшем он вызывает появление магнитного поля.

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

  1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
  2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
  3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

Уравнение 3: Закон Гаусса для магнетизма

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

  1. Магнитных монополей не существует.
  2. Расхождение полей B или H всегда равно нулю в любом объёме.
  3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

Уравнение 4: Закон Ампера

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t)

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Это же уравнение в интегральной форме:

уравнение в интегральной форме:

Первое уравнение в интегральной форме: ∮DdS = ∫ρdV

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

И это же уравнение в интегральной форме:

Второе уравнение Максвелла ∮Edl = -∫∂B/∂t dS

Второе уравнение Максвелла (в интегральной форме) ∮Edl = — ∫ ∂B/∂t dS

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

И это же уравнение в интегральной форме:

Третье уравнение Максвелла в интегральной форме: ∮BdS = 0

Третье уравнение Максвелла в интегральной форме: ∮BdS = 0

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t

И это же уравнение в интегральной форме:

Четвёртое уравнение Максвелла в интегральной форме: ∮Hdl = ∫ (j +∂D/∂t)dS

Четвёртое уравнение Максвелла в интегральной форме: ∮Hdl = ∫ (j +∂D/∂t)dS

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Читайте также:  Зависимость магнитного потока от тока возбуждения

Источник

Электричество и магнетизм 6 Уравнения Максвелла

date image2018-01-08
views image1796

facebook icon vkontakte icon twitter icon odnoklasniki icon

Полная система уравнений Максвелла для электромагнитного поля имеет вид: Следующая система уравнений: справедлива для … 1. в отсутствие заряженных тел 2. в отсутствие заряженных тел и токов проводимости* 3. при наличии заряженных тел и токов проводимости 4. в отсутствие токов проводимости

Рассмотрим уравнения Максвелла.

1-е уравнение – закон полного тока: циркуляция напряженности магнитного поля по произвольному замкнутому контуру определяется током проводимости и быстротой изменения потока электрической индукции через площадь, охваченную данным контуром.

2-е уравнение – закон электромагнитной индукции: циркуляция напряженности электрического поля по произвольному замкнутому контуру определяется быстротой изменения магнитного потока через площадь, охваченную данным контуром, взятому с обратным знаком.

3-е уравнение – теорема Гаусса для электрического поля: поток индукции электрического поля через произвольную замкнутую поверхность равен заряду внутри этой поверхности.

4-е уравнение – теорема Гаусса для магнитного поля: поток индукции магнитного поля через произвольную замкнутую поверхность равен заряду 0.

Таким образом, видно, что в заданных уравнениях и , а, следовательно, они справедливы для переменного электромагнитного поля в отсутствие заряженных тел и токов проводимости .

Ответ: 2

Полная система уравнений Максвелла для электромагнитного поля имеет вид: Следующая система уравнений: справедлива для … 1: стационарного электрического и магнитного полей* 2: переменного электромагнитного поля при наличии заряженных тел и токов проводимости 3: переменного электромагнитного поля в отсутствие заряженных тел 4: переменного электромагнитного поля в отсутствие токов проводимости

Для стационарных полей , т. е. источниками электрического поля в данном случае являются только электрические заряды, источниками магнитного поля – только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.

Источник

§25. Ток смещения и система уравнений Максвелла

Мы установили, что изменяющееся магнитное поле порождает изменяющееся электрическое поле, которое в свою очередь порождает изменяющееся магнитное поле и т. д. В результате образуются сцепленные между собой электрическое и магнитное поля, составляющие электромагнитную волну. Она “отрывается” от зарядов и токов, которые ее породи­ли. Способ существования электромагнитной волны делает невозможным ее неподвижность в пространстве и постоянство напряженности во времени.

Постоянный ток не протекает в цепи с конденсатором, а в случае переменного напряжения в цепи ток протекает через конденсатор. Для постоянного тока конденсатор – разрыв в цепи, а для переменного этого разрыва нет. Поэтому необходимо заключить, что между обкладками конденсатора происходит некоторый процесс, который как бы замыкает ток проводимости. Этот процесс между обкладками конденсатора был назван током смещения. Напряженность поля между обкладками конденсатора . Из граничного условия для вектора следует, что диэлектрическое смещение между обкладками , а сила тока в цепи равна . Тогда

, (25.1)

А значит процессом, замыкающим ток проводимости в цепи, является изменение электрического смещения во времени. Плотность тока

. (25.2)

Существование тока смещения было постулировано Максвеллом в 1864 г. и затем экспериментально подтверждено другими учеными.

Почему скорость изменения вектора смещения называется плотностью тока? Само по себе математическое равенство величины , характеризующей процесс между обкладками конденсатора, т. е. равенство двух величин, относящихся к разным областям пространства и имеющим различную физическую природу, не содержит в себе, вообще говоря, какого-то физического закона. Поэтому называть ”током” можно только формально. Для того чтобы придать этому названию физический смысл, необходимо доказать, что обладает наиболее характерными свойствами тока, хотя и не представляет движения электрических зарядов, подобного току проводимости. Главным свойством тока проводимости является его способность порождать магнитное поле. Поэтому решающим является вопрос о том, порождает ли ток смещения магнитное поле так же, как его порождают ток проводимости, или, более точно, порождает ли величина (25.2) такое же магнитное поле, как равная ей объемная плотность тока проводимости? Максвелл дал утвердительный ответ на этот вопрос. Однако наиболее ярким подтверждением порождения магнитного поля током смещения является существование электромагнитных волн. Если бы ток смещения не создавал магнитного поля, то не могли бы существовать электромагнитные волны.

Читайте также:  Определите активное сопротивление цепи если дан закон изменения тока

Уравнение Максвелла с током смещения.

Порождение магнитного поля токами проводимости описывается уравнением

(25.3)

Учитывая порождение поля током смещения, необходимо обобщить это уравнение в виде

(25.4)

Тогда, принимая во внимание (25.2), окончательно получаем уравнение

, (25.5)

Являющееся одним из уравнений Максвелла.

Система уравнений Максвелла.

Полученная в результате обобщения экспериментальных данных, эта система имеет вид:

, (25.6)

Эти уравнения называются полевыми и справедливы при описании всех макроскопических электромагнитных явлений. Учет свойств среды достигается уравнениями

, (25.7)

Называемыми обычно Материальными уравнениями среды. Среды линейны, если и нелинейны если . Материальные уравнения, как правило, имеют вид функционалов.

Рассмотрим физический смысл уравнений.

Уравнение I выражает закон, по которому магнитное поле порождается токами проводимости и смещения, являющимися двумя возможными источниками магнитного поля. Уравнение II выражает закон электромагнитной индукции и указывает на изменяющееся магнитное поле как на один из возможных источников, порождающих электрическое поле. Вторым источником электрического поля являются электрические заряды (уравнение IV). Уравнение III говорит о том, что в природе нет магнитных зарядов.

Полнота и совместность системы. Единственность решения.

В случае линейной среды можно исключить из полевых уравнений (25.6) величины в результате чего они становятся уравнениями относительно векторов и , т. е. относительно шести неизвестных (у каждого вектора по 3 проекции). С другой стороны число скалярных уравнений в (25.6) равно восьми. Получается, что система состоит из 8 уравнений для 6 неизвестных. Однако в действительности система не переполнена. Это обусловлено тем, что уравнения I и IV, а также II и III имеют одинаковые дифференциальные следствия и поэтому связаны между собой.

Чтобы в этом убедиться возьмем от уравнения II и производную по времени от уравнения III. Получим:

,

Т. е. получили одинаковые дифференциальные следствия. Аналогично возьмем от уравнения I:

.

С из уравнения непрерывности следует, что . Тогда

или . Из IV следует, что

Наличие двух дифференциальных связей и делает систему уравнений Максвелла совместной. Более подробный анализ показывает, что система является полной, а ее решение однозначно при заданных начальных и граничных условиях.

Доказательство единственности решения в общих чертах сводится к следующему. Если имеется два различных решения, то их разность вследствие линейности системы тоже является решением, но при нулевых зарядах и токах и нулевых начальных и граничных условиях. Отсюда, пользуясь выражением для энергии электромагнитного поля и законом сохранения энергии заключаем, что разность решений тождественно равна нулю, т. е. решения одинаковы. Тем самым единственность решения уравнений Максвелла доказана.

Источник



Система уравнений Максвелла

19 Сентября 2020

  • Уравнения Максвелла
  • Границы применимости уравнений Максвелла
  • Первое уравнение Максвелла
  • Второе уравнение Максвелла
  • Третье уравнение Максвелла
  • Четвертое уравнение Максвелла
  • Следствия из уравнений Максвелла
  • Уравнения Максвелла
  • Границы применимости уравнений Максвелла
  • Первое уравнение Максвелла
  • Второе уравнение Максвелла
  • Третье уравнение Максвелла
  • Четвертое уравнение Максвелла
  • Следствия из уравнений Максвелла

Формулы Дж. Максвелла являются основой теоретического описания электромагнитных явлений, которое предложил ученый. С помощью выявленных закономерностей объясняют эмпирические факты, известные в тот период времени, и предсказываются некоторые эффекты. Основным выводом, который выражает теория Максвелла, является положение, подтверждающее наличие волн электромагнитного характера, распространяющихся со скоростью света.

Уравнения Максвелла

Уравнения Максвелла представляют собой обобщение уравнений в дифференциальной или интегральной форме, объясняющую характер любых электромагнитных полей, взаимосвязи токов и электрических зарядов в любых средах.

С помощью обозначения формул Максвелла обобщают основные закономерности электрических и электромагнитных явлений. Как основа теоретического исследования электромагнитного поля, данная система формул направлена на решение задач на поиск электрических и магнитных полей, образованных путем заданного распределения электрических зарядов и токов. Уравнения Максвелла послужили основой для развития теории относительности Эйнштейна. Благодаря объяснению теории Максвелла, удалось раскрыть электромагнитную природу света.

Дж. Максвелл сформулировал оригинальные уравнения в 60-х годах XIX века. Главными источниками для исследований послужили эмпирические законы и идеи ученых, работы которых связаны с изучением электромагнитных явлений, включая Кулона, Био-Савара, Ампера, Фарадея.

Самостоятельно Максвеллом было выведено 20 формул, в которых использовалось 20 неизвестных, записанных в дифференциальном виде. В дальнейшем уравнения были преобразованы. Данные исследования получили негативные оценки критиков, которые являлись современниками Максвелла. Причиной является существенное отличие предложенных формул от ранее известных определений.

Читайте также:  Как в симс 4 умереть от тока

Несмотря на скептическое отношение в то время, сегодня уравнения Максвелла воспринимаются, как правильные и справедливые не только для привычного макромира, но и областей квантовой механики. Благодаря данному исследованию, произошел настоящий переворот восприятия людьми научной картины мира. Уравнения предвосхитили обнаружение радиоволн и продемонстрировали смысл электромагнитной природы света.

Уравнения Максвелла в современной интерпретации несколько отличаются от нынешней формы записи. Современные преобразованные формулы являются результатом трудов немецкого физика Г. Герца и английского физика О. Хевисайда.

Границы применимости уравнений Максвелла

При необходимости исследований с учетом движения среды, формулы Максвелла не изменяют, а движение учитывают при составлении материальных уравнений. В данных отношениях наблюдается зависимость от характеристики скорости сред, что усложняет формулы в системе СИ. При этом материальные уравнения более не являются соотношениями между парами величин. К примеру, наблюдается зависимость плотности тока проводимости от индукции магнитного поля, наряду с напряженностью электрического поля. Для системы уравнения Максвелла характерны следующие ограничения:

  • неподвижность материальных тел в поле;
  • зависимость постоянных ε, μ, σ от координат, но не от времени и векторов поля;
  • отсутствие в поле постоянных магнитов и ферромагнетиков.

Уравнение Максвелла

При известной величине намагниченности представляется возможным описать магнитное поле постоянных магнитов с применением системы уравнений Максвелла. В случае заданных токов поле с ферромагнетиками с помощью данных формул описать не получится.

Первое уравнение Максвелла

Описание данного уравнения тесно связано с понятием дивергенции. Данное явление называют дифференциальным оператором, с помощью которого определяют поток конкретного поля сквозь какую-то поверхность. Уместно сравнить данную систему с краном или трубой. К примеру, при большом диаметре крана и напора в трубе увеличивается поток жидкости через поверхность в виде крана. Современная форма первого уравнения Максвелла имеет следующий вид:

В данном уравнении Максвелла Е является векторным электрическим полем, зависящим от суммарного заряда, который заключен внутри замкнутой поверхности. Данное уравнение является законом Гаусса.

Второе уравнение Максвелла

Данная формула, выведенная ученым, представляет собой закон Фарадея. На основе данных закономерностей функционируют электрические двигатели. В конструкции моторов ток в катушке возникает, благодаря вращающимся магнитам. Второе уравнение Максвелла имеет следующий вид:

Ротор электрического поля в виде интеграла через замкнутую поверхность выражается скоростью, с которой изменяется магнитный поток, пронизывающий эту поверхность. Наглядным примером такого явления может служить вода в ванной, сливаемая через отверстие. Вокруг слива будет образована воронка. Ротор в этом случае будет являться суммой или интегралом векторов скоростей молекул воды, вращающихся вокруг сливного отверстия.

Третье уравнение Максвелла

Представленная ученым формула является законом Гаусса. Следует отметить, что третье уравнение Максвелла справедливо не для электрического поля, а для магнитного. Формулировка имеет следующий вид:

Данное соотношение демонстрирует нулевое значение потока магнитного поля через замкнутую поверхность. Электрические заряды с положительным или отрицательным значением существуют отдельно друг от друга и приводят к образованию электрического поля в окружающей среде. Магнитные заряды в природе отсутствуют.

Четвертое уравнение Максвелла

Данная формула считается наиболее важной из всех приведенных ранее. Согласно четвертому уравнению, Максвелл определил что такое ток смещения. Равенство записывают таким образом:

Данные уравнения носят название теоремы о циркуляции вектора магнитной индукции. Согласно этому утверждению, вихревое магнитное поле образовано электрическим током и изменением электрического поля.

Следствия из уравнений Максвелла

Все формулы объясняют определенные явления. Суть каждого из них заключается в следующем:

  • первое уравнение – электрическое поля образовано электрическим зарядом;
  • второе уравнение – вихревое электрическое поле является результатом изменений магнитного поля;
  • третье уравнение – отсутствие в природе магнитных зарядов;
  • четвертое уравнение – вихревое магнитное поле сформировано электрическим током и изменением электрической индукции.

Электрические заряды

Уравнения Максвелла полностью соотносятся с принципами специальной теории относительности. Формулы необходимы для микроскопического описания вещества в условиях классического электромагнитного поля и заряженных частиц, подчиняющихся принципам квантовой механики. Более последовательное объединение полевого подхода с принципами квантовой механики осуществляют по средствам методов квантовой теории поля в квантовой электродинамике.

Подобные дисциплины изучают студенты современных профильных вузов. Данные области научных знаний достаточно сложны для восприятия. Поэтому при возникновении трудностей в образовательном процессе можно обратиться к ресурсу Феникс.Хелп.

Источник