Меню

Сила тока в проводнике пропорциональна разности потенциалов

Закон Ома. Электрическое сопротивление и резисторы

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

Электрический ток в цепи создается разностью потенциалов. Разность потенциалов можно получить, например, с помощью батареи. Немецкий физик Георг Симон Ом (1787-1854) экспериментально доказал, что сила электрического тока I в металлическом проводнике прямо пропорциональна разности потенциалов V на его концах:

Это утверждение называют законом Ома. Если, например, подсоединить к батарее напряжением 6 В проводник, то через него потечет ток, сила которого будет в два раза больше, чем от батареи с напряжением 3 В.

Полезно сравнить электрический ток с потоком воды в реке или трубе. Если труба расположена почти горизонтально, скорость потока будет невелика. Но если один конец трубы окажется выше другого, скорость потока заметно увеличится. И чем больше разность уровней, тем больше скорость потока. Ранее мы обратили внимание на аналогию между электрическим потенциалом и высотой скалы при рассмотрении электрического и гравитационного полей. Эта аналогия применима в данном случае к разности уровней потока. Подобно тому, как увеличение перепада высот вызывает возрастание потока воды, чем больше разность потенциалов, или напряжение, тем больше сила электрического тока.

Сила тока в проводнике зависит не только от напряжения, но и от того сопротивления, которое проводник оказывает потоку электронов. Стенки трубы, берега реки и пороги создают сопротивление потоку воды. Точно так же и электроны тормозятся в результате взаимодействий с атомами проводника. Чем выше сопротивление, тем меньше сила тока при данном напряжении V. Таким образом, сопротивление определяется тем, что сила тока обратно пропорциональна ему. С учетом этого можно написать

где R — электрическое сопротивление (или просто сопротивление) участка цепи, V — разность потенциалов на этом участке, а I — сила тока в цепи. Приведенные выражения часто записывают в виде V = IR и называют законом Ома. Впрочем, это не закон, а скорее определение сопротивления.
Обнаруженная Омом закономерность, строго говоря, состоит в утверждении, что сила тока в металлическом проводнике пропорциональна приложенному напряжению: I

V. Это утверждение несправедливо в общем случае, например, применительно к таким веществам, как полупроводники, электронные лампы, транзисторы и т.п. «Закон Ома» поэтому не относится к таким фундаментальным законам природы, как законы Ньютона, начала термодинамики или закон Кулона. Он лишь характеризует определенные материалы — металлические проводники. О материалах или схемах, для которых закон Ома не выполняется, говорят как о неомических или нелинейных. Определение электрического сопротивления

[формула (26.3)] применимо и к таким нелинейным случаям, но R будет не постоянным, а зависящим от приложенного напряжения. Закон Ома утверждает, что сопротивление R постоянно и не зависит от V для металлических проводников. Поскольку это утверждение не отражает фундаментальных свойств природы, его, вероятно, следовало бы называть не законом, а правилом или соотношением. Но выражение «закон Ома» настолько укоренилось, что мы не станем возражать против его употребления, а будем лишь помнить о его ограниченной применимости.

Единицей сопротивления служит ом (Ом); согласно (26.3), 1 Ом соответствует 1 В/А. Все электрические приборы от нагревателей и электрических ламп до стереофонических усилителей оказывают сопротивление протекающему через них току. Соединительные провода обладают, как правило, очень низким сопротивлением. Во многих схемах, в частности в электронных приборах, для управления силой тока используют резисторы, которые могут иметь электрическое сопротивление от долей ома до 10 6 Ом (МОм). На рис. 26.6 показаны некоторые типы резисторов (табл. 26.1). Обычно резисторы бывают двух основных типов: проволочные (представляющие собой катушки тонкой проволоки) и непроволочные (обычно изготовленные на основе углеродной пленки).

Рис. 26. 6. Сопротивление резистора указывается на корпусе цифрами или цветным кодом. Первые две полоски соответствуют двум значащим цифрам сопротивления, третья указывает множитель (число нулей), четвертая — допуск. Например, сопротивление резистора, имеющего красную, оранжевую, зеленую и серебряную полоски, равно 25 000 Ом (25 кОм) ± 10%.

Маркировка резисторов

Замечания и предложения принимаются и приветствуются!

Источник

Сила тока в проводнике пропорциональна разности потенциалов

«Физика — 10 класс»

Что заставляет заряды двигаться вдоль проводника?
Как электрическое поле действует на заряды?

Вольт-амперная характеристика.

В предыдущем параграфе говорилось, что для существования тока в проводнике необходимо создать разность потенциалов на его концах. Сила тока в проводнике определяется этой разностью потенциалов. Чем больше разность потенциалов, тем больше напряжённость электрического поля в проводнике и, следовательно, тем большую скорость направленного движения приобретают заряженные частицы. Это означает увеличение силы тока.

Для каждого проводника — твёрдого, жидкого и газообразного — существует определённая зависимость силы тока от приложенной разности потенциалов на концах проводника.

Зависимость силы тока в проводнике от напряжения, подаваемого на него, называют вольт-амперной характеристикой проводника.

Её находят, измеряя силу тока в проводнике при различных значениях напряжения. Знание вольт-амперной характеристики играет большую роль при изучении электрического тока.

Закон Ома.

Наиболее простой вид имеет вольт- амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) её установил немецкий учёный Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома.

На участке цепи, изображённой на рисунке 15.3, ток направлен от точки 1 к точке 2. Разность потенциалов (напряжение) на концах проводника равна U = φ1 — φ2. Так как ток направлен слева направо, то напряжённость электрического поля направлена в ту же сторону и φ1 > φ2.

Измеряя силу тока амперметром, а напряжение вольтметром, можно убедиться в том, что сила тока прямо пропорциональна напряжению.

Закон Ома для участка цепи:

Сила тока на участке цепи прямо пропорциональна приложенному к нему напряжению U и обратно пропорциональна сопротивлению этого участка R.

Применение обычных приборов для измерения напряжения — вольтметров — основано на законе Ома. Принцип устройства вольтметра такой же, как и у амперметра. Угол поворота стрелки прибора пропорционален силе тока.

Сила тока, проходящего по вольтметру, определяется напряжением между точками цепи, к которой он подключён. Поэтому, зная сопротивление вольтметра, можно по силе тока определить напряжение. На практике прибор градуируют так, чтобы он сразу показывал напряжение в вольтах.

Читайте также:  Фаза а ток при отсутствии напряжения

Сопротивление.

Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении.

Свойство проводника ограничивать силу тока в цепи, т. е. противодействовать электрическому току, называют электрическим сопротивлением проводника.

С помощью закона Ома (15.3) можно определить сопротивление проводника:

Для этого нужно измерить напряжение на концах проводника и силу тока в нём.

На рисунке 15.4 приведены графики вольт-амперных характеристик двух проводников. Очевидно, что сопротивление проводника, которому соответствует график 2, больше, чем сопротивление проводника, которому соответствует график 1.

Сопротивление проводника не зависит от напряжения и силы тока.

Сопротивление зависит от материала проводника и его геометрических размеров.

Сопротивление проводника длиной l с постоянной площадью поперечного сечения S равно:

где ρ — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь).

Величину ρ называют удельным сопротивлением проводника.

Удельное сопротивление материала численно равно сопротивлению проводника из этого материала длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицу сопротивления проводника устанавливают на основе закона Ома и называют её омом.

Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нём 1 А.

Единицей удельного сопротивления является 1 Ом • м. Удельное сопротивление металлов мало. А вот диэлектрики обладают очень большим удельным сопротивлением. Например, удельное сопротивление серебра 1,59 • 10 -8 Ом • м, а стекла порядка 10 10 Ом • м. В справочных таблицах приводятся значения удельного сопротивления некоторых веществ.

Значение закона Ома.

Из закона Ома следует, что при заданном напряжении сила тока на участке цепи тем больше, чем меньше сопротивление этого участка. Если по какой-то причине (нарушение изоляции близко расположенных проводов, неосторожные действия при работе с электропроводкой и пр.) сопротивление между двумя точками, находящимися под напряжением, оказывается очень малым, то сила тока резко возрастает (возникает короткое замыкание), что может привести к выходу из строя электроприборов и даже возникновению пожара.

Именно из-за закона Ома нельзя говорить, что чем выше напряжение, тем оно опаснее для человека. Сопротивление человеческого тела может сильно изменяться в зависимости от условий (влажности, температуры окружающей среды, внутреннего состояния человека), поэтому даже напряжение 10—20 В может оказаться опасным для здоровья и жизни человека. Следовательно, всегда необходимо учитывать не только напряжение, но и силу электрического тока. При работе в физической лаборатории нужно строго соблюдать правила техники безопасности!

Закон Ома — основа расчётов электрических цепей в электротехнике.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 27. Лекция 27-1. Электрический ток, его характеристики. Сопротивление. Закон Ома.

Проводники отличаются от диэлектриков тем, что в них есть свободные заряды, которые могут перемещаться по всему объему проводника.

Если изолированный проводник поместить в электрическое поле , то на свободные заряды qв проводнике будет действовать сила . В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, не скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника равно нулю.

Однако, в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током.

Электрический ток – упорядоченное движение заряженных частиц.

За направление электрического тока принято направление движения положительных свободных зарядов.

В металлах носителями зарядов являются электроны — отрицательно заряженные частицы, поэтому электрический ток в металлах всегда направлен против дижения электронов.

Количественной мерой электрического тока служит сила тока I.

Сила тока – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Сила тока численно равна количеству зарядов, прошедших через поперечное сечение проводника за 1 секунду.

Упорядоченное движение электронов в металлическом проводнике
I — сила тока, S – площадь поперечного сечения проводника, – электрическое поле.

Единица измерения силы тока в Международной системе единиц СИ ампер [А].

Прибор для измерения силы тока называется амперметр.

Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток.

На схемах электрических цепей амперметр обозначается .

Амперметр обладает некоторым внутренним сопротивлением RA. Внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

Кратковременный ток в проводнике можно получить, если соединить этим проводником два заряженных проводящих тела, которые имеют различный потенциал. Ток в проводнике исчезнет, когда потенциал тел станет одинаковым. Для существования электрического тока в проводнике необходимо создать в нем и длительное время поддерживать электрическое поле.

Читайте также:  Расчет фазного тока по линейному

Условия существования электического тока:

1.Наличие свободных зарядов внутри проводника,

2. Наличие разности потенциалов на концах проводника (создание электрического поля внутри проводника)

Электрический ток – это упорядоченное движение заряженных частиц, которое создается электрическим полём, а оно при этом совершает работу. Работа токаэто работа сил электрического поля, создающего электрический ток.

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. При перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы.

Работа электростатических сил при перемещении единичного заряда равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Величину U 12 принято называть напряжением на участке цепи 1–2.

Напряжениеэто физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2.


В случае однородного участка напряжение равно разности потенциалов: U 12 = φ 1 – φ 2

Единица измерения напряжения в Международной системе единиц СИ вольт [В].

Прибор для измерения напряжения называется вольтметр.


Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.

На схемах электрических цепей амперметр обозначается .

Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Аналогично тому, как трение в механике препятствует движению, сопротивление проводника создает противодействие направленному движению зарядов и определяет превращение электрической энергии во внутреннюю энергию проводника. Причина сопротивления: столкновение свободно движущихся зарядов с ионами кристаллической решетки.

Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.

В СИ единицей электрического сопротивления проводников служит ом [Ом]. Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Электрическое сопротивление проводника зависит от размеров и формы проводника и от материала, из которого изготовлен проводник.

S – площадь поперечного сечения проводника
l – длина проводника
ρ – удельное сопротивление проводника.

Сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения.

Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением проводника. Оно численно равно сопротивлению проводника длиной 1 м и площадью сечения 1 мм 2 , изготовленного из данного вещества. Единица удельного сопротивления в СИ [1 Ом*м = 1 Ом*мм 2 /м]

Сопротивление проводника зависит и от его состояния, а именно от температуры.

Эта зависимость выражается формулой или

α – температурный коэффициент сопротивления. Для всех чистых металлов .

При нагревании чистых металлов их сопротивление увеличивается, а при охлаждении – уменьшается.

Закон Ома для участка цепи.

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводник, обладающий электрическим сопротивлением, называется резистором.

Проводники, подчиняющиеся закону Ома, называются линейными.

Графическая зависимость силы тока I от напряжения U называется вольт-амперная характеристика (сокращенно ВАХ). Она изображается прямой линией, проходящей через начало координат.

По вольт-амперной характеристике проводника можно судить о его сопротивлении: чем больше угол наклона графика к оси напряжения, тем меньше сопротивление проводника.

Источник



Сила тока в проводнике пропорциональна разности потенциалов

Если изолированный проводник поместить в электрическое поле то на свободные заряды в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током . За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока – скалярная физическая величина, равная отношению заряда Δ, переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ, к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Читайте также:  Система генератор двигатель постоянного тока с независимым возбуждением

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы сторонних сил при перемещении заряда от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

Величину принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока от напряжения (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи () является однородным.

По закону Ома

.

Участок () содержит источник тока с ЭДС, равной .

По закону Ома для неоднородного участка,

.

Сложив оба равенства, получим:

.

Эта формула выражет закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой и внутренним сопротивлением . У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то , т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление включено и через батарею протекает ток , разность потенциалов на ее полюсах становится равной

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной и внутренним сопротивлением в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность электрического поля внутри батареи и силы, действующие на положительные заряды: – электрическая сила и – сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением . Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:

>> 1.

Это условие означает, что ток , протекающий через вольтметр, много меньше тока , который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением A. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию

A,

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы – вольтметры и амперметры – бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Источник