Меню

Сила тока при коронном разряде

Коронный разряд

Коро́нный разря́д — это характерная форма самостоятельного газового разряда, возникающего в резко неоднородных полях. Главной особенностью этого разряда является то, что ионизационные процессы электронами происходят не по всей длине промежутка, а только в небольшой его части вблизи электрода с малым радиусом кривизны (так называемого коронирующего электрода). Эта зона характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка.

Возникает при сравнительно высоких давлениях (порядка атмосферного) в сильно неоднородном электрическом поле. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). Когда напряжённость поля достигает предельного значения для воздуха (около 30 кВ/см), вокруг электрода возникает свечение, имеющее вид оболочки или короны (отсюда название).

На линиях электропередачи возникновение коронного разряда нежелательно, так как вызывает значительные потери передаваемой энергии. С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на 2, 3, 5 или 8 составляющих, в зависимости от номинального напряжения линии [для уменьшения тока в проводнике]. Составляющие располагаются в углах правильного многоугольника (или на диаметре окружности, в случае расщепления на 2 составляющих), образуемого специальной распоркой.

В естественных условиях коронный разряд может возникать на верхушках деревьев, мачтах — т. н. огни святого Эльма.

Применение

Коронный разряд применяется для очистки газов от пыли и сопутствующих загрязнений (электростатический фильтр), для диагностики состояния конструкций (позволяет обнаруживать трещины в изделиях).

Коронный разряд применяется в копировальных аппаратах (ксероксах) и лазерных принтерах для заряда светочувствительного барабана, переноса порошка с барабана на бумагу и для снятия остаточного заряда с барабана.

Коронный разряд применяется для определения давления внутри лампы накаливания. Величина разряда зависит от острия и давления газа вокруг него. Острие у всех ламп одного типа — это нить накала. Значит, коронный разряд будет зависеть только от давления. А значит, о давлении газа в лампе можно судить по величине коронного разряда.

Иногда можно использовать так называемый «системный» способ уменьшения потерь мощности на корону. В зависимости от обстоятельств (температура, влажность и т. д.) диспетчер уменьшает напряжение в линии до определенной величины. В связи с этим задаются наименьшие допустимые сечения по короне:

  • 110 кВ — 70 мм² (сейчас рекомендуется использовать сечение 95 мм²).
  • 150 кВ — 120 мм².
  • 220 кВ — 240 мм².

Источник

Сила тока при коронном разряде

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала — до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями — от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов — возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал — стример, по которому устремляется от катода к аноду мощный поток электронов — происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями — электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду — аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.

Читайте также:  Номинальный ток якоря равен

Источник

Коронные разряды или огни святого Эльма

Коронные разряды или огни святого Эльма. Большой отряд воинов Древнего Рима находился в ночном походе. Надвигалась гроза. И вдруг над отрядом показались сотни голубоватых огоньков. Это засветились острия копий воинов. Казалось, железные копья солдат горят не сгорая!

Природы удивительного явления в те времена никто не знал, и солдаты решили, что такое сияние на копьях предвещает им победу. Тогда это явление называли огнями Кастора и Поллукса — по имени мифологических героев-близнецов. А позднее переименовали в огни Эльма — по названию церкви святого Эльма в Италии, где они появлялись.

Особенно часто такие огни наблюдали на мачтах кораблей. Римский философ и писатель Луций Сенека говорил, что во время грозы «звезды как бы нисходят с неба и садятся на мачты кораблей». Среди многочисленных рассказов об этом интересно свидетельство капитана одного английского парусника.

Случилось это в 1695 году, в Средиземном море, у Балеарских островов, во время грозы. Опасаясь бури, капитан приказал спустить паруса. И тут моряки увидели в разных местах корабля больше тридцати огней Эльма. На флюгере большой мачты огонь достиг более полуметра в высоту. Капитан послал матроса с приказом снять его. Поднявшись наверх, тот крикнул, что огонь шипит, как ракета из сырого пороха. Ему приказали снять его вместе с флюгером и принести вниз. Но как только матрос снял флюгер, огонь перескочил на конец мачты, откуда снять его было невозможно.

Еще более впечатляющую картину увидели в 1902 году моряки парохода «Моравия». Находясь у островов Зеленого Мыса, капитан Симпсон записал в судовом журнале: «Целый час в море полыхали молнии. Стальные канаты, верхушки мачт, нокреи, ноки грузовых стрел — все светилось. Казалось, что на шканцах через каждые четыре фута повесили зажженные лампы, а на концах мачт и нокрей засветили яркие огни». Свечение сопровождалось необычным шумом:

«Словно мириады цикад поселились в оснастке или с треском горел валежник и сухая трава. »

Огни святого Эльма разнообразны. Бывают они в виде равномерного свечения, в виде отдельных мерцающих огоньков, факелов. Иногда они настолько похожи на языки пламени, что их бросаются тушить.

Американский метеоролог Хэмфри, наблюдавший огни Эльма на своем ранчо, свидетельствует: это явление природы, «превращая каждого быка в чудище с огненными рогами, производит впечатление чего-то сверхъестественного». Это говорит человек, который по самому своему положению не способен, казалось бы, удивляться подобным вещам, а должен принимать их без лишних эмоций, опираясь только на здравый смысл.

Можно смело утверждать, что и ныне, несмотря на господство, — далеко, правда, не повсеместное, — естественнонаучного мировоззрения, найдутся люди, которые, окажись они в положении Хэмфри, увидели бы в огненных бычьих рогах нечто неподвластное разуму. О средневековье и говорить нечего: тогда в тех же рогах усмотрели бы, скорее всего, происки сатаны.

Коронный разряд

Коронный разряд, электрическая корона, разновидность тлеющего разряда, который возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). При Коронном разряде эти электроды окружены характерным свечением, также получившим название короны, или коронирующего слоя.

Примыкающая к короне несветящаяся («тёмная») область межэлектродного пространства называется внешней зоной. Корона часто появляется на высоких остроконечных предметах (святого Эльма огни), вокруг проводов линий электропередач и т. д Коронный разряд может иметь место при различных давлениях газа в разрядном промежутке, но наиболее отчётливо он проявляется при давлениях не ниже атмосферного.

Появление коронного разряда объясняется ионной лавиной. В газе всегда есть некоторое число ионов и электронов, возникающих от случайных причин. Однако, число их настолько мало, что газ практически не проводит электричества.

При достаточно большой напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя соударениями, может сделаться достаточной, чтобы ионизировать нейтральную молекулу при соударении. В результате образуется новый отрицательный электрон и положительно заряженный остаток — ион.

Свободный электрон при соударении с нейтральной молекулой расщепляет ее на электрон и свободный положительный ион. Электроны при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны и свободные положительные ионы и т.д.

Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома — работой ионизации. Работа ионизации зависит от строения атома и поэтому различна для разных газов.

Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивает число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому этот процесс был назван ионной лавиной.

Натянем на двух высоких изолирующих подставках металлическую проволоку ab, имеющую диаметр несколько десятых миллиметра, и соединим ее с отрицательным полюсом генератора, дающего напряжение несколько тысяч вольт. Второй полюс генератора отведем к Земле. Получится своеобразный конденсатор, обкладками которого являются проволока и стены комнаты, которые, конечно, сообщаются с Землей.

Поле в этом конденсаторе весьма неоднородно, и напряженность его вблизи тонкой проволоки очень велика. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение (корона), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием.

Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, между проволокой и стенами переносится ионами, образованными в комнате благодаря ударной ионизации.

Таким образом, свечение воздуха и появление тока указывает на сильную ионизацию воздуха под действием электрического поля. Коронный разряд может возникнуть не только вблизи проволоки, но и у острия и вообще вблизи любых электродов, возле которых образуется очень сильное неоднородное поле.

Электрические разряды

Применение коронного разряда

Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только и проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.

Счетчики элементарных частиц

Счетчик элементарных частиц Гейгера — Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Напряжение выбирают необходимым для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листка электрометра будут откланяться.

Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.

Громоотвод

Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека ничтожно мала, тем не менее молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий в крупных линиях электропередачи вызывается молниями. Поэтому, защита от молнии представляет собой важную задачу.

Читайте также:  Принципиальная схема подключения трехфазного тока

Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в Землю на уровне почвенных вод.

Молниеприемник

Во время грозы на Земле появляются большие индуцированные заряды и у поверхности Земли появляется большое электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.

В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов, например, на концах корабельных мачт, острых верхушек деревьев, и т.д. Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.

Источник



Исследование коронного разряда

Целью работы: Является ознакомление с основными свойствами коронного разряда и исследование работы стабилитронов на их основе.

Коронный разряд является самостоятельным разрядом в сравнительно плотном газе.

Если к двум электродам, между которыми находится газовый промежуток, приложить электрическое поле, то при определенной разности потенциалов между электродами, которую назовем критической и обозначим через U0, возникает коронный разряд. Его появление существенным образом зависит от конфигурации электродов. Легче всего коронный разряд возникает между остриями, тонкими проволочками, шарами малого диаметра и т. п. Внешне коронный разряд проявляется в том, что в небольшом объеме газа (воздуха) около одного или обоих электродов возникает слабое свечение (в воздухе – сине-зеленого цвета). При прочих равных условиях вероятность появления свечения вокруг электрода, а, следовательно, короны, тем больше, чем меньше радиус кривизны электродов. Электрод, вокруг которого наблюдается свечение, называют коронирующим электродом. Свечение, возникающее при коронном разряде около электрода, связано с элементарными процессами, происходящими на границе электрод – воздух или в объеме воздуха вблизи электрода. В результате элементарных процессов в небольшом объеме воздуха вблизи электрода протекают ионизация, возбуждение, диссоциация молекул азота и кислорода. Естественно, что в этом объеме воздуха должны развиваться и обратные процессы: рекомбинация ионов и электронов, образование отрицательных ионов, переход возбужденных молекул (атомов) из возбужденных состояний в нормальные с излучением квантов света и т. д. По своему спектральному составу свечение, наблюдаемое при коронном разряде в воздухе, состоит преимущественно из молекулярных полос испускания, принадлежащих второй положительной системе полос молекулярного азота и первой отрицательной системе полос ионизованного молекулярного кислорода, благодаря чему свечение концентрируется в сине-зеленой и ультрафиолетовой областях спектра.

Если коронирующий электрод присоединить к положительному полюсу источника питания, то коронный разряд называется положительной короной. При присоединении коронирующего электрода к отрицательному полюсу – отрицательной короной. Практически различия между спектральным составом свечения, возникающего при положительной и отрицательной короне, не существует, хотя есть некоторая разница в самом характере свечения. В случае положительной короны свечение вокруг коронирующего электрода распределяется равномернее, чем при отрицательной короне. В последнем случае свечение сосредоточено у отдельных точек коронирующего электрода. Кроме того, критические потенциалы коронного разряда и искрового пробоя UП неодинаковы.

Возникновение коронного разряда объясняется, появлением вблизи коронирующего электрода резкой неоднородности электрического поля, значительно превосходящей напряженность электрического поля на других участках воздушного промежутка между электродами. Для возникновения коронного разряда напряженность поля у электрода должна превосходить электрическую прочность воздуха. В результате большой напряженности электрического поля слой воздуха вблизи коронирующего электрода будет пробит и станет проводящим. При этом около электрода возникает корона. Радиус проводящего слоя возрастает до тех пор, пока на его границе напряженность электрического поля не станет равной электрической прочности воздуха. Таким образом, при коронном разряде пробой газа распространяется не на весь воздушный междуэлектродный промежуток. Если приложенную к электродам разность потенциалов увеличивать сверх критического потенциала U0, то с повышением U – сила разрядного тока быстро увеличивается, а толщина коронирующего слоя около электрода возрастает. Когда разность потенциалов между электродами достигает нового значения UП, наступает искровой пробой всего газового промежутка.

Отрицательный коронный разряд

В разрядном промежутке коронного разряда электроны осуществляют ударную ионизацию, возбуждение и диссоциацию молекул воздуха. В итоге каждый свободный электрон способен на своем пути к аноду создать ряд новых электронов, образующих движущуюся от катода к аноду лавину. Наряду с образованием такой лавины в зоне ионизации появляются и положительные ионы, которые под действием электрического поля начинают двигаться к катоду, а также значительное число возбужденных молекул и атомов. При этом, например, молекулы воздуха под действием электронного удара в коронном разряде могут возбуждаться до высоких энергий. Такие возбужденные молекулы (атомы) при переходе в нормальное состояние испускают кванты с большой энергией, преимущественно в области вакуумного ультрафиолета, для которых характерен весьма большой показатель поглощения. Поглощаясь в воздушном промежутке, кванты будут ионизовать новые молекулы. Появление новых центров ионизации приводит к возникновению новых электронных лавин.

По мере удаления от катода напряженность электрического поля убывает, что в свою очередь приводит к уменьшению скорости движения (энергии) свободных электронов в лавине. На некотором расстоянии L От катода электрическое поле ослаблено настолько, что свободные электроны, движущиеся в лавине, практически перестанут производить дальнейшую ионизацию молекул (атомов) воздуха, из-за чего коэффициент объемной ионизации станет приблизительно равным нулю. Оставшиеся в воздушном промежутке свободные электронные с малыми энергиями либо рекомбинируют с положительными ионами, либо же, взаимодействуя с атомами и молекулами кислорода, образуют отрицательные ионы. Вероятность образования отрицательных ионов в воздухе при нормальной плотности весьма велика из-за большого электронного сродства атомарного и молекулярного кислорода.

Следовательно, на расстоянии от катода свыше L, то есть за пределами области отрицательного коронного разряда, образуется внешняя униполярная область, носителями тока в которой являются отрицательные ионы кислорода (O2, О-). Под действием электрического поля такие ионы медленно перемещаются к аноду. Из-за малой подвижности отрицательных ионов кислорода за пределами области коронного разряда в воздушном промежутке образуется отрицательный пространственный заряд, который будет препятствовать продвижению к аноду отрицательных ионов, что приведет к ограничению силы тока коронного разряда.

Несколько иная картина создается при образовании отрицательной короны в электроположительных газах, например, в чистом азоте. В этом случае за пределами области коронного разряда также находятся отрицательные заряды, однако, носителями тока являются свободные электроны. Поскольку подвижность свободных электронов во много раз больше подвижности отрицательных ионов, при одной и той же силе тока плотность объемного заряда, образуемая свободными электронами, значительно меньше плотности объемного заряда, создаваемого отрицательными ионами кислорода. Поэтому в чистых электроположительных газах отрицательный объемный пространственный заряд ограничивает ток коронного разряда гораздо слабее, чем в газах, способных образовывать отрицательные ионы.

Положительный коронный разряд

В этом случае коронирующий электрод является анодом, а катодом служит электрод с большим радиусом кривизны (например, плоскость). При положительной короне основная роль отводится электронам, возникающим в процессе объемной фотоионизации молекул воздуха между электродами. При достаточно большой напряженности электрического поля свободный электрон приобретает значительную энергию на своем пути движения к аноду. Электроны, движущиеся в сильном электрическом поле, на своем пути к аноду станут ионизовать молекулы воздуха, что приведет к образованию электронной лавины, которая в конечном итоге попадает на анод. У анода, то есть в области положительного коронного разряда, протекают не только процессы ионизации электронным ударом, но и процессы возбуждения молекул воздуха и их продуктов диссоциации. Кванты света, испущенные такими молекулами (атомами), будут ионизовать в объеме газа новые молекулы. Образовавшиеся таким образом фотоэлектроны пополняют убыль электронов в области коронного разряда.

Читайте также:  Десульфатация акб импульсным током

За пределами области положительного коронного разряда в межэлектродном воздушном промежутке находятся положительные ионы азота N2+, N+, которые под действием электрического поля медленно перемещаются к катоду. Эти положительные ионы создают положительный пространственный заряд, ограничивающий силу тока коронного разряда. Как и в случае отрицательной короны, при увеличении разности потенциалов между электродами толщина коронирующего слоя в положительной короне возрастает и при некоторой критической разности потенциалов наступает искровой пробой.

Сила тока коронного разряда определяется величиной сопротивления внешней области короны. Поэтому для нахождения вольтамперной характеристики надо решать уравнение Пуассона для внешней области короны. Полная система уравнений, описывающих распределение поля во внешней области коронного разряда, имеет вид:

, , , .

Обычно на практике пользуются простыми приближенными формулами, либо найденные эмпирически, либо выведенными на основе теоретических расчетов при значительном упрощении задачи.

Дейтш, решая задачу приближенно, вывел формулы характеристики короны для следующих случаев:

,

Где H – расстояние от провода до плоскости; R0 – радиус коронирующего провода; K – подвижность заряженных частиц (положительная K+=1.8·10–4 м2/B·сек, отрицательная K– =1.6·10–4 м2/B сек); U0 – напряжение возникновения короны;

– провод на равном расстоянии H между двумя плоскостями

,

– проводов радиуса R0, расположенных на равном расстоянии от плоскостей и на расстоянии D один от другого;

.

Константа А рассчитывается отдельно для каждого значения H и D.

Для любой конфигурации электродов ток коронного разряда можно представить следующим выражением

.

Прерывистые явления в коронном разряде

И положительная, и отрицательная корона сопровождается в воздухе характерным звуковым явлением – шипением. Это шипение носит несколько различный характер в случае положительной и отрицательной короны и при каждой из них изменяется с изменением силы коронного тока. Таким образом, уже непосредственное визуальное наблюдение коронного разряда указывает на ряд прерывистых явлений в короне. Прерывистый характер коронного разряда был обнаружен Тричелем. Коронный ток, как показал Тричель, слагается из периодических и правильно чередующихся импульсов. При повышении напряжения сила тока в каждом импульсе остается неизменной, а общая сила тока коронного разряда увеличивается за счет увеличения частоты чередования импульсов.

Каждый регулярный импульс представляет собой обычным образом развивающийся ряд лавин, сопровождаемой фотоионизацией в окружающем объеме газа. Как показали исследования, прерывистые явления тока коронного разряда наблюдались только в электроотрицательных газах и при наличии последних в смеси газов хотя бы в небольшом количестве.

Частота чередования импульсов Тричеля обуславливается, временем накопления и рассасывания пространственного заряда.

Применение коронного разряда в технике

Вольт-амперная характеристика тока коронного разряда данного промежутка зависит от геометрии промежутка, наполняющего его газа и состояния электродов. В некоторых газоразрядных приборах используется зависимость «критического потенциала» от одного из параметров разрядного промежутка (приборы для определения температуры, давления, влажности газа).

Отрицательный коронный разряд применяется для зарядки и последующего осаждения электрическим полем взвешенных в газе посторонних мелких частиц: пылинок, частиц дыма (аэрозолей) мелко распыленных продуктов и т. д. Такая аппаратура носит название электрофильтра.

Если через область с коронным разрядом проходят неодинаковые по размерам и физической природе частицы, то происходит их частичное разделение. Это явление используется в электросепараторах.

Коронный разряд также применяется для непрерывного и безинерционного анализа газовых смесей. В этом случае при изменении состава газа в разрядном промежутке изменяется напряжение коронного разряда.

Большое различие в подвижности положительных ионов и электронов в разрядном промежутке позволяет использовать коронный разряд также для выпрямления и стабилизации высокого напряжения.

В последнее время коронный разряд нашел применение в экспериментальной ядерной физике. Счетчики медленных нейтронов (типа СНМ-9, СНМ-13) работают в режиме коронного разряда. Широкое применение коронный разряд находит в электрографии, в электроокраске, медицине, сельском хозяйстве, в промышленности для нанесения порошковых покрытий, в текстильной промышленности и т. д.

Стабилитроны коронного разряда

Стабилитроны – это газоразрядные неуправляемые приборы, предназначенные для поддержания неизменным выходного напряжения на нагрузке при изменении нагрузочного тока или напряжения в сети. Стабилитроны коронного разряда применяются для стабилизации напряжения в маломощных нагрузках. Приборы выполняются в стеклянных или керамических оболочках – баллонах, наполненных смесью инертных газов.

Последовательно в цепь со стабилитроном включается сопротивление для ограничения разрядного тока и обеспечения работы схемы стабилизации. Нагрузка включается параллельно стабилитрону.

При увеличении напряжения на входе увеличивается ток через стабилитрон и ограничительное сопротивление RБ. За счет увеличения тока через RБ на нем увеличивается падение напряжения, а напряжение на стабилитроне остается практически неизменным. При уменьшении входного напряжения ток через стабилитрон и через резистор RБ уменьшается, падение напряжения на RБ уменьшается, а напряжение на стабилитроне остается неизменным. Так как, нагрузка подключена параллельно стабилитрону, то на ней поддерживается постоянное напряжение, не зависящее от колебаний входного напряжения.

Стабилитроны коронного разряда предназначены как для непосредственной стабилизации напряжения, так и в качестве опорных элементов в высоковольтных электронных стабилизаторах при токах не более 1.5 мА и напряжениях 0.3…30 кВ. Применяются в цепях питания фотоумножителей, электронно-оптических преобразователей изображения, в цепях отражательных электродов клистронов, в цепях электрографических установок и т. д. Баллоны наполняются смесью водорода и азота. Эти стабилитроны относительно стабилитронов тлеющего разряда имеют более пологие вольт-амперные характеристики и увеличенную проводимость до возникновения разряда (утечка до 2 мкА). Для возникновения разряда необходимо время до 30 сек.

Сопротивление нагрузки RН должно быть такой величины, чтобы при известных изменениях UВх и токе нагрузки IН ток через стабилитрон IСт не превышал значения максимального тока стабилизации, указанного в справочнике.

Стабилизирующие свойства стабилитронов коронного разряда определяются их динамическим сопротивлением RД, которое находится из вольт-амперной характеристики.

.

Коэффициент стабилизации в зависимости от изменения входного напряжения при постоянном токе через нагрузку IН определяется как:

.

Коэффициент стабилизации в зависимости от изменения тока нагрузки при постоянном входном напряжении определяется как:

.

Если входное напряжение в N раз больше выходного, то есть ,

То сопротивление RБ можно определить из выражения

.

, .

В предлагаемой работе схема лабораторной установки позволяет проводить исследование стабилитрона коронного разряда СГ302С. Балластное сопротивление RБ и сопротивление нагрузки RН выполнены так, что можно установить требуемое значение тока нагрузки и необходимую по расчету величину балластного сопротивления.

Порядок выполнения работы

1. Ознакомиться с руководством к лабораторной работе и схемой лабораторной установки. Установить ручку регулятора напряжения в положение, соответствующее нулевому напряжению.

2. Снять ВАХ отрицательного коронного разряда промежутка игла – плоскость для трех фиксированных расстояний между электродами: H1 = 5.5 мм; H2 = 6.5 мм; H3 = 8 мм.

3. Снять ВАХ отрицательного коронного разряда промежутка ряд игл – плоскость для двух значений расстояния между иглами в ряду B = 7.5 мм и B = 2.5 мм. В обоих случаях расстояние между электродами Н = 6.5 мм. Для каждого случая рассчитать ток с одного острия.

4. По указанию преподавателя для одного значения Н снять ВАХ промежутка игла – плоскость для положительной короны.

5. С помощью осциллографа исследовать прерывистые явления коронного разряда с острия для отрицательной короны. Снять зависимость частоты и амплитуды колебаний тока коронного разряда от среднего значения тока для трех одиночных игл.

Исследование работы стабилитрона коронного разряда СГ302С-1 проводится по указанию преподавателя. ВНИМАНИЕ! Ток через стабилитрон не должен превышать 100 мкА.

6. Снять ВАХ стабилитрона IСт = F (UСт).

RБ1… RБ7 = 10 мОм, 5.1 мОм, 1.8 мОм, 750 кОм, 510 кОм, 300 кОм, 1.3 мОм.

7. Снять нагрузочную характеристику стабилитрона IН = F (UН), UН = F (IН). RН1… RН7 = 1.8, 5.1, 10, 10, 10, 20, 10 мОм.

8. Снять стабилизационную характеристику UН = F (UВх) для указанного режима стабилизации.

Содержание отчета

1. Цель работы. Схему лабораторной установки.

2. Таблицы с экспериментальными данными и графики полученных зависимостей.

3. Для полученных ВАХ коронного разряда промежутка острие-плоскость произвести расчет значений коэффициента А.

4. Для коронного стабилитрона рассчитать величину динамического сопротивления и коэффициент стабилизации напряжения.

Источник