Меню

Сила тока направлена от нас как направлены силовые линии магнитного поля

Магнитное поле и его характеристики

теория по физике ? магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

Читайте также:  Включение транзистора при стабилизации тока

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Сила Ампера

Электрическая цепь, состоящая из четырёх прямолинейных горизонтальных проводников (1–2, 2–3, 3–4, 4–1) и источника постоянного тока, находится в однородном магнитном поле, направленном вертикально вниз (см. рисунок, вид сверху). Как направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вызванная этим полем сила Ампера, действующая на проводник 2–3? Ответ запишите словом (словами)

По правилу левой руки, сила Ампера будет направлена вправо.

Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1–2, 2–3, 3–4, 4–1) и источника постоянного тока, находится в однородном магнитном поле. Вектор магнитной индукции В направлен к наблюдателю, относительно рисунка (см. рисунок, вид сверху). Куда направлена (вправо, влево, от наблюдателя, к наблюдателю) вызванная этим полем сила Ампера, действующая на проводник 1–2? Ответ запишите словом.

“Досрочная волна 2019 вариант 1”

Для того, чтобы определить направление силы Ампера нужно воспользоваться правилом левой руки. Нужно расположить раскрытую ладонь так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутых пальца указывали направление тока, тогда отставленный большой палец укажет направление силы Ампера. Ток в цепи направлен от положительного полюса к отрицательному, поэтому ток на участке 1–2 направлен сверху вниз. Следовательно, сила Ампера направлена горизонтально влево.

Электрическая цепь, состоящая из прямолинейных проводников (1–2, 2–3, 3–4) и источника постоянного тока, находится в однородном магнитном поле, у которого вектор магнитной индукции \(\vec\) направлен от наблюдателя (см. рисунок). Куда направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вызванная этим полем сила Ампера, действующая на проводник 2–3? Ответ запишите словом (словами)

“Досрочная волна 2020 вариант 1”

Ток в цепи течёт от плюса к минусу. При помощи правила левой руки определим направление силы Ампера, действующей на проводник 2–3. Сила Ампера будет направлена влево.

Квадратная рамка расположена в однородном магнитном поле в плоскости линий магнитной индукции так, как показано на рисунке. Направление тока в рамке показано стрелками. Куда направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) сила Ампера, действующая на сторону cd рамки со стороны магнитного поля? Ответ запишите словом (словами). “Основная волна 2020 ”

Используем правило левой руки, силовые линии входят в ладонь, 4 пальца по направлению тока, а большой палец указывает на направление силы. В данном случае от наблюдателя

Алюминиевый стержень движется вниз по параллельным сторонам проводящей рамки, подключенной к источнику постоянного напряжения так, как показано на рисунке. Рамка расположена под углом \(\alpha\) к горизонту, ее пронизывают линии магнитной индукции \(\vec\) , направленные вертикально вверх. Куда направлена (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вызванная магнитным полем сила Ампера, действующая на стержень? Ответ запишите словом (словами).

Направление силы Ампера определяется по правилу левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля \(\vec\) входил в ладонь, четыре вытянутых пальца указывали направление тока \(I\) , то тогда отогнутый на 90 \(^\circ\) большой палец укажет направление силы Ампера.
Необходимо определить направление силы тока, проходящего через стержень. Ток течет от ”плюса” к ”минусу”. Положительно заряженная клемма на рисунке показана большой черточкой, а отрицательно заряженная — маленькой. Таким образом, определяем направление силы тока по первому рисунку.
Обратимся ко второму рисунку. Относительно второго рисунка сила тока \(I\) направлена ”к нам”. Расположим ладонь левой руки согласно правилу. Определим, что сила Ампера \(F_A\) направлена влево.

По тонкой медной рамке, помещенной в однородное магнитное поле, течет постоянный ток (см. рисунок). Куда направлена (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) магнитная сила, действующая на сторону рамки \(cd\) ? Ответ запишите словом (словами).

На проводник с током действует сила Ампера.
Направление силы Ампера определяется по правилу левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля \(\vec\) входил в ладонь, четыре вытянутых пальца указывали направление тока \(I\) , то тогда отогнутый на 90 \(^\circ\) большой палец укажет направление силы Ампера.
Расположим ладонь левой руки согласно правилу. Определим, что сила Ампера направлена от наблюдателя.

Читайте также:  Метод лечения позвоночника током

По прямолинейному горизонтальному участку провода протекает постоянный ток \(I\) . Сверху к нему медленно подносят постоянный магнит (см. рисунок). Куда направлена (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) магнитная сила (сила Ампера), действующая на провод? Ответ запишите словом (словами).

На проводник с током действует сила Ампера.
Направление силы Ампера определяется по правилу левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля \(\vec\) входил в ладонь, четыре вытянутых пальца указывали направление тока \(I\) , то тогда отогнутый на 90 \(^\circ\) большой палец укажет направление силы Ампера.
Необходимо определить направление вектора магнитной индукции \(\vec\) . Так как силовые линии магнита выходят из северного полюса и уходят в южный, следовательно, вектор магнитной индукции направлен вниз.
Расположим ладонь левой руки согласно правилу. Определим, что сила Ампера \(F_A\) направлена от наблюдателя.

Источник

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

магнетит

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой – на ЮГ.

магнетит на воде

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

китайский древний компас

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

древний компас со стрелкой

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

сауз парк

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

линии магнитного поля

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

замкнутые магнитные линии

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

взаимодействие разноименных магнитных полей

Если же приблизить одноименными полюсами, то произойдет их отталкивание

взаимодействие одноименных полюсов магнита

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

плотность магнитного потока

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

формула магнитного потока

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S – площадь, через которую проходит магнитный поток, м 2

магнитный поток

Что же такое 1 Вебер? Один вебер – это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: “напряженность между ними все росла и росла”. То есть по сути напряженность – это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

напряженность магнитного поля формула

H – напряженность магнитного поля, Ампер/метр

B – плотность магнитного потока, Тесла

μ – магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

напряженность магнитного поля в веществе формула

μ – это относительная магнитная проницаемость.

У разных веществ она разная

магнитная проницаемость веществ

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

напряженность проводника с током

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

напряженность магнитного поля проводника с током

H – напряженность магнитного поля, Ампер/метр

I – сила тока, текущая через проводник, Ампер

r – расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

правило буравчика

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

саморез

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

направление электрического тока

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

суммирование магнитного поля

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

Читайте также:  Что такое номинал трансформаторов тока

сумма магнитных полей

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

соленоид

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

плотность магнитного потока в соленоиде

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

принцип работы соленоида

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

многообмоточная катушка

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

многообмоточная катушка

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме “магнитное поле”

Источник



35. Электродинамика Читать 0 мин.

35.184. Магнитное поле

Электрические и магнитные явления связаны, так как имеют общую природу ― электромагнитное поле. Движение электрических зарядов всегда создает магнитное поле, а магнитное поле, в свою очередь, всегда вызывает перемещение электрических зарядов.

Так как ток ― это направленное перемещение электрических зарядов, то протекание тока в проводнике всегда создает магнитное поле вокруг проводника.

Линии магнитного поля, которое создается проводниками с электрическим током.

Для изображения магнитных полей используют магнитные силовые линии ― линии, на которых модуль вектора магнитной индукции одинаков и равен В, а сам вектор магнитной индукции $\overline$ направлен по касательной к линии. Линии магнитной индукции всегда замкнуты.

Для обозначения направлений движения тока и направлений магнитных силовых линий, помимо стрелок «вправо» → и «влево» ←, используются знаки «от нас» ― ⊗ или ⊕ (как торец оперения стрелы, летящей от нас), и «к нам» • или ⊙ (как острие летящей на нас стрелы).

Чтобы определить направление вектора магнитной индукции $\overline$, которое создает ток, протекающий в прямом проводнике, используется правило правого винта: если представить, что вкручиваешь винт по направлению тока ― то направление вращения винта покажет направление вектора магнитной индукции.

Магнитное поле, которое создает ток в прямом проводнике, представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. При этом, некоторая область магнитного поля всегда направлена на нас, а другая ― от нас.

Чтобы определить направление вектора магнитной индукции $\overline$, которое создает ток, в круговом проводнике или витках катушки, используется правило правого винта: если ток вращается по часовой стрелке, то магнитное поле будет направлено «от нас». Если ток течет против часовой стрелки, то ток будет направлен «на нас».

Сила Ампера―сила, действующая на проводник с током со стороны магнитного поля. Сила ампера равна FA = IBLsinα, где

I ― сила тока в проводнике [A];

sinα ― синус угла между проводником и вектором магнитной индукции.

Сила Ампера максимальна, если между проводником и вектором магнитной индукции угол равен α = 90°, так как sinα = sin90° = 1 и FA = IBLsin90° = IBL.

Если проводник расположен параллельно вектору магнитной индукции, т. е. α = 0° ― сила Ампера отсутствует, так как sinα= sin0° = 0 и FA = IBLsin0° = 0.

Направление силы Ампера определяется по правилу левой руки: если ладонь расположить так, чтобы линии магнитного поля входили в ладонь, а четыре пальца указывали направление тока ― то противопоставленный большой палец укажет направление силы Ампера.

Взаимодействие проводников с током

Ток, протекающий в проводнике, создает магнитное поле. Если рядом расположен еще один проводник, в котором протекает ток ― то второй проводник оказывается в магнитном поле, которое создает первый. На проводник в магнитном поле действует сила Ампера, в результате чего проводники с током или притягиваются, или отталкиваются друг от друга.

Пусть в проводниках 1 и 2 токи текут в одном направлении. Тогда первый проводник создает магнитное поле, направленное против часовой стрелки. В области, близлежащей к проводнику 2 это поле направлено перпендикулярно проводнику и от него. Согласно правилу левой руки, сила Ампера, которая действует со стороны магнитного поля, создаваемого проводником 1 на проводник с током 2, F1-2 направлено в сторону проводника 1.

Проводник 2 действует на проводник 1 аналогично, и сила ампера, с которой магнитное поле проводника 2 действует на проводник 1 F2-1 направлена в сторону проводника 2.

Таким образом, силы Ампера, с которым действуют проводники друг на друга ― F1-2 и F2-1 направлены навстречу друг другу и проводники притягиваются.

Пусть теперь ток в проводнике 2 течет в том же направлении, а ток в проводнике 1 ― в противоположном. Магнитное поле, которое создает проводник 1, будет направлено по часовой стрелке, а в ближайшей к проводнику 2 области ― на нас. Согласно правилу левой руки, такое магнитное поле создает силу Ампера, направленную от проводника 1.

Магнитное поле, которое создает проводник 2, будет направлено как в первом случае, но из-за того, что ток в проводнике 1 течет в противоположную сторону, сила Ампера F2-1 будет направлена от проводника 2.

Силы Ампера, с которым действуют проводники друг на друга ― F1-2 и F2-1 направлены в разные стороны и проводники отталкиваются.

Сила Лоренца ― сила, действующая, на заряженную частицу, движущуюся в магнитном поле. Сила Лоренца равна = qBvsinα, где

B ― индукция магнитного поля [Тл];

α ― угол, между вектором скорости частицы и вектором индукции магнитного поля.

Векторы силы Лоренца перпендикулярен вектору скорости частицы. Воздействуя, сила Лоренца изменяет только направление скорости, но не модуль.

Направление силы Лоренца для положительно заряженной частицы определяется по правилу левой руки: если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь, а пальцы ― так, чтобы они указывали направление вектора скорости частицы, то противопоставленный большой палец укажет направление силы Лоренца.

Для отрицательно заряженной частицы (например, электрона) направление силы Лоренца определяется по правилу левой руки ― а затем изменяется на противоположное.

Магнитное поле постоянного магнита. Магниты обладают собственным магнитным полем. Силовые линии магнита выходят из северного магнитного полюса (N) и входят в южный магнитный полюс (S).

Магнитные поля двух магнитов взаимодействуют друг с другом, переориентируя магниты так, чтобы магнитные линии выходили из северного магнитного полюса и входили в ближайший южный магнитный полюс. При этом одинаковые полюса двух магнитов, отталкиваются, а разные ― притягиваются.

Источник