Меню

Шаговый двигатель какая сила тока

Шаговые двигатели (подробный разбор 4 типов)

Общие сведения:

Шаговый двигатель — это бесколлекторный двигатель, ротор которого вращается не плавно, а шагами (дискретно). Полный оборот ротора состоит из нескольких шагов. Меняя форму сигнала, количество импульсов, их длительность и фазовый сдвиг, можно задавать скорость вращения, направление вращения и количество оборотов ротора двигателя.

Шаговые двигатели состоят из ротора (подвижная часть) и статора (неподвижная часть). На статоре устанавливают электромагниты, а части ротора взаимодействующие с электромагнитами выполняются из магнитотвердого (двигатель с постоянными магнитами) или магнитомягкого (реактивный двигатель) материала.

Виды шаговых двигателей по типу ротора:

По типу ротора, шаговые двигатели делятся на: двигатели с постоянными магнитами, реактивные двигатели и гибридные двигатели.

  • Двигатель с постоянными магнитами (ротор из магнитотвердого материала). На роторе установлен один, или несколько, постоянных магнитов. Количество полных шагов в одном обороте таких двигателей, зависит от количества постоянных магнитов на роторе, и количества электромагнитов на статоре. Обычно в одном обороте от 4 до 48 шагов (один шаг от 7,5° до 90° ).
  • Реактивный двигатель (ротор из магнитомягкого материала). Еще такие двигатели называют двигателями с переменным магнитным сопротивлением. Ротор не имеет постоянных магнитов, он выполнен из магнитомягкого материала в виде многоконечной звезды. Данные двигатели встречаются редко, так как у них наименьший крутящий момент, по сравнению с остальными, при тех же размерах. Количество полных шагов в одном обороте таких двигателей, зависит от количества зубцов на звезде ротора, и количества электромагнитов на статоре. Обычно в одном обороте от 24 до 72 шагов (один шаг от 5° до 15°.)
  • Гибридный двигатель (совмещает технологии двух предыдущих двигателей). Ротор выполнен из магнитотвердого материала (как у двигателя с постоянными магнитами), но имеет форму многоконечной звезды (как у реактивного двигателя). Количество полных шагов в одном обороте таких двигателей, зависит от количества постоянных магнитов на звезде ротора, и количества электромагнитов на статоре. Количество шагов в одном обороте таких двигателей может доходить до 400 (один шаг от 0,9°).

Какой тип шагового двигателя у меня?

Если вручную покрутить ротор отключённого двигателя, то можно заметить, что он движется не плавно, а шагами. После того, как Вы покрутили ротор, замкните все провода двигателя и покрутите ротор повторно. Если ротор крутится также, значит у Вас реактивный двигатель. Если для вращения ротора требуется прикладывать больше усилий, значит у вас двигатель с постоянными магнитами или гибридный. Отличить двигатель с постоянными магнитами от гибридного можно подсчитав количество шагов в одном обороте. Для этого не обязательно считать все шаги, достаточно примерно понять, их меньше 50 или больше. Если меньше, значит у Вас двигатель с постоянными магнитами, а если больше, значит у Вас гибридный двигатель.

Виды шаговых двигателей по типу соединения электромагнитов статора:

По типу соединения электромагнитов, шаговые двигатели делятся на: униполярные и биполярные.

Виды шаговых двигателей по типу статора

На рисунке представлено упрощённое, схематическое, представление обмоток.
На самом деле, каждая обмотка состоит из нескольких обмоток электромагнитов, соединённых последовательно или параллельно

  • Биполярный двигатель имеет 4 вывода. Выводы A и A питают обмотку AA, выводы B и B питают обмотку BB. Для включения электромагнита, на выводы обмотки необходимо подать разность потенциалов (два разных уровня), поэтому двигатель называется биполярным. Направление магнитного поля зависит от полярности потенциалов на выводах.
  • Униполярный двигатель имеет 5 выводов. Центральные точки его обмоток соединены между собой и являются общим (пятым) выводом, который, обычно, подключают к GND. Для включения электромагнита, достаточно подать положительный потенциал на один из выводов обмотки, поэтому двигатель называется униполярным. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.
  • 6-выводной двигатель имеет ответвление от центральных точек обмоток, но обмотка AA не соединена с обмоткой BB. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения электромагнитов. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно.

Какой тип шагового двигателя у меня?

Если у Вашего двигателя 4 вывода, значит он биполярный. Если у Вашего двигателя 5 выводов, значит он униполярный. Но если у Вашего двигателя 6 и более выводов, то это не значит что некоторые из них являются центральными выводами катушек электромагнитов. Дело в том, что есть двигатели, некоторые выводы которых (обычно крайние), электрически замкнуты, так биполярный двигатель может иметь 6 выводов. Точно определить тип соединений, для двигателей с 6 и более выводами, можно только измеряя сопротивление между выводами.

Режимы работы шаговых двигателей:

    Для работы шагового двигателя (вне зависимости от его вида) можно выбрать один из трех режимов работы:
  • Полношаговый режим — ротор поворачивается на 1 шаг за 1 такт.
  • Полушаговый режим — ротор поворачивается на ½ шага за 1 такт.
  • Микрошаговый режим — ротор поворачивается на ¼, ⅛ и т.д. шагов за 1 такт.

Ниже рассмотрены режимы работы, на примере биполярного двигателя с постоянным магнитом и полным шагом 90°.

Полношаговый режим (одна фаза на полный шаг). Номинальные значения шагового двигателя указываются именно для этого режима.

Полношаговый режим работы шагового двигателя - одна фаза

Полношаговый режим (две фазы на полный шаг). Этот режим позволяет увеличить крутящий момент почти в половину от номинального.

Полношаговый режим работы шагового двигателя - две фазы

Полушаговый режим. Этот режим позволяет увеличить количество шагов в полном обороте в два раза, при незначительном уменьшении крутящего момента.

Полушаговый режим работы шагового двигателя

Микрошаговый режим. Этот режим является наиболее распространённым, он позволяет увеличить количество шагов в полном обороте в четыре раза, благодаря неравномерному распределению токов в обмотках. Снижение токов можно достичь снижением напряжения (как показано на картинке) или подавать полное напряжение через подключаемую внешнюю нагрузку.

Микрошаговый режим работы шагового двигателя

Если подавать уровни не «0» — «½» — «1» (как на картинке), а «0» — «¼» — «½» — «¾» — «1», то количество шагов в полном обороте увеличится не в 4 раза, а в 8 раз. Можно увеличить количество шагов в 16, 32, 64 раза и т.д., а если заменить дискретные уровни сигналов на синусоиды, то мотор будет вращаться плавно (без шагов).

Режимы пониженного энергопотребления — доступны только для 8-выводных двигателей. Эти режимы отличаются от обычных тем, что используют только половину фазы (половину электромагнитов). Данные режимы используются редко, так как они значительно снижают крутящий момент двигателя.

Читайте также:  Индукция магнитного поля в катушке с током формула

Работа шагового двигателя в режимах пониженного энергопотребления

Пример работы шаговых двигателей с разными видами роторов:

Пример работы шаговых двигателей с разными видами роторов

Подключение шаговых двигателей к Arduino:

Электромоторы нельзя подключать к выводам Arduino напрямую, так как они потребляют значительные токи, шаговые двигатели не являются исключением, поэтому их подключают через драйверы.

Большинство драйверов работают либо с биполярными двигателями, либо с униполярными.

  • Биполярный двигатель можно подключить только к драйверу биполярных двигателей.
  • 6-выводной двигатель можно подключить к любому драйверу. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток внутри двигателя, последовательно или параллельно.
  • Униполярный двигатель, при необходимости, можно подключить и к драйверу биполярного двигателя по простой схеме из нескольких диодов (лучше использовать диоды Шоттки), но такое подключение гарантирует корректность работы униполярного двигателя только в полношаговом режиме.

Источник

Часто задаваемые вопросы по шаговым двигателям (FAQ)

DM442 Leadshine, напряжение 20..40 В, ток до 4.2 А

Шаговый двигатель ST57-56D

Биполярные ШД

драйвера шаговых двигателей купить цена

  • Что такое шаговый двигатель и для чего он?
  • Какие достоинства у шаговых двигателей?
  • Какие бывают шаговые двигатели?
  • Корпус у меня не разборный, а хочется посмотреть что внутри!
  • На какой минимальный угол может повернуться шаговый двигатель?
  • Какие существуют программы для работы с шаговыми двигателями?
  • Как можно повысить точность вращения вала шагового двигателя?
  • Что означают характеристики шагового двигателя — ток, индуктивность, напряжение и т.п.?
  • Какой шаговый двигатель лучше, А или Б?
  • Что такое драйвер управления шаговым двигателем?
  • Как узнать, подходит ли двигатель А к драйверу Б?
  • У меня перегревается двигатель, что делать?
  • Шаговый двигатель постоянно пропускает шаги. Что делать?

Вопрос: Что такое шаговый двигатель и для чего он?

Ответ: Шаговые двигатели — это устройства, задача которых преобразование электрических импульсов в поворот вала двигателя на определенный угол. В отличие от обычных двигателей, шаговые двигатели имеют особенности, которые определяют их свойства при использовании в специализированных областях: управляя шаговым двигателем с помощью специального устройства (драйвер шагового двигателя), можно поворачивать его вал на строго заданный угол. Это позволяет применять его там, где требуется высокая точность перемещений. Наглядные примеры это принтеры, факсы, копировальные машины, станки с ЧПУ (Числовое программное управление), фрезерные, гравировальные машины, модули линейного перемещения, плоттеры, установщики радиоэлектронных компонентов. Шаговый двигатель является бесколлекторным двигателем постоянного тока. Как и другие бесколлекторные двигатели, шаговый двигатель высоконадежен и при надлежащей эксплуатации имеет длительный срок службы.

Вопрос : Какие достоинства у шаговых двигателей?

Ответ: Достоинства истекают из особенностей конструкции:
— Шаговый двигатель может обеспечить очень точное перемещение на заданный угол, причем без обратной связи — поворот ротора зависит от числа поданных импульсов на устройство управления;
— высокая точность позиционирования и повторяемость, так качественные шаговые двигатели имеют точность не хуже 5% от величины шага, при этом данная ошибка не накапливается;
— хорошая надежность двигателя, обусловленная отсутствием щеток, при этом срок службы двигателя ограничивается лишь ресурсом подшипников;
— обеспечивает получение сверхнизких скоростей вращения вала без использования редуктора;
— работа в широком диапазоне скоростей, т.к. скорось напрямую зависит от количества входных импульсов.
Недостатки
— шаговый двигатель подвержен резонансу;
— может пропустить шаги и реальная позиция вала окажется рассинхронизирована с позицией, заданной в управляющей системе
— низкая удельная мощность шагового привода;
— потребляемая энергия не уменьшается при отсутствии нагрузки;
— малый момент на высоких скоростях;

Вопрос : Какие бывают шаговые двигатели?

Ответ: Шаговых двигателей существует множество разновидностей. В настоящее время 95% всех шаговых двигателей — гибридные. В зависимости от конфигурации обмоток двигатели делятся:

а)Биполярный — имеет четыре выхода, содержит в себе две обмотки.
б)Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины.
в)Четырехобмоточный — имеет четыре независимые обмотки. Можно представлять его как униполярный, обмотки которого разъединены, а если соединить соседние отводы — получим биполярный двигатель.

В зависимости от типа электронного коммутатора управление шаговым двигателем может быть: однополярным или разнополярным; симметричным или несимметричным; ·потенциальным или импульсным. При однополярном управлении напряжение каждой фазе изменяется от 0 до +U, а при разнополярном – от -U до +U. Управление называется симметричным, если в каждом такте коммутации задействуется одинаковое число обмоток, и несимметричным – если разное.

Вопрос: Корпус у меня не разборный, а хочется посмотреть что внутри!

Ответ: Внутри находятся обмотки, зубчатый ротор и несколько подшипников. Не стоит разбирать рабочий двигатель. Ротор устанавливается с малым зазором, кроме того, система ротор-статор образует замкнутый магнитопровод, который намагничивается в собранном состоянии, и двигатель после разборки теряет существенную часть момента.


Вопрос: На какой минимальный угол может повернуться шаговый двигатель?

Вопрос : Какие существуют программы для работы с шаговыми двигателями?

Ответ: Их существует множество как перемещение на определенный шаг, так для трехмерного использования. Могут управлять от одного до шести двигателей. Например MACH3, LinuxCNC, Turbocnc, NC Studio.

Вопрос : Как можно повысить точность вращения вала шагового двигателя?

Ответ: Есть режим дробления шага (микрошаг) реализуется при независимом управлении током обмоток шагового электродвигателя. Управляя соотношением токов в обмотках можно зафиксировать ротор в промежуточном положении между шагами. Таким образом можно повысить плавность вращения ротора и добиться высокой точности позиционирования. Однако, деление шага не всегда приводит к увеличению точности. Погрешность установки вала всегда равна указанному производителем значению (обычно 5% от полного шага), вне зависимости от микрошага. Кроме того, точность установки снижается, если ток в одной из обмоток близок к нулю. В результате точность увеличивает деление шага до примерно 8-10 микрошагов (деление 1/8 или 1/10). Большие значения приводят лишь к увеличению плавности хода.

Вопрос : Что означают характеристики шагового двигателя — ток, индуктивность, напряжение и т.п.?

Ответ: Все характеристики двигателя находятся в тесной взаимосвязи и определяют главную — кривую зависимости крутящего момента от скорости. Рассматривать влияение характеристик надо для двигателей одного размера. Момент удержания — пиковое значение крутящего момента двигателя — зависит от тока и индуктивности обмотки. Чем больше индуктивность, тем больший момент удержания можно развить, но тем больше требуется напряжение питания на высоких скоростях, чтобы преодолеть индуктивное сопротивление и закачать нужный ток в обмотку. Ток обмотки также определяет выбор драйвера шагового двигателя. Напряжение питания обмотки равно U = I*R, номинальному току обмотки умноженному на напряжение и показывает, какое постоянное напряжение надо подать на обмотку, чтобы получить номинальный ток и, соответственно, момент удержания. Величина напряжения используется при выборе драйвера и характеристик источника питания.

Читайте также:  Как рассчитать силу тока в генераторе

Вопрос Какой шаговый двигатель лучше, А или Б?

Ответ: Этот вопрос неоднозначен, но все же дадим пару рекомендаций. Как правило, ориентироваться надо не на момент удержания, а на индуктивность. Лучше работают те двигатели, у которых индуктивность меньше — большинство задач требуют момента на высоких скоростях, и малая индуктивность требует меньшего напряжения питания. Нормальной индуктивностью можно считать 2-5 мГн для двигателей NEMA23 (фланец 57 мм), 4-6 мГн для двигателей NEMA34 (фланец 86 мм). Если А и Б — двигатели разного размера, смотрите кривую зависимости момента от скорости — чем она более пологая, тем лучше.

Вопрос : Что такое драйвер управления шаговым двигателем?

Ответ: Драйвера шаговых двигателей используются для управления биполярными и униполярными шаговыми двигателями с полным шагом, половинным и микрошагом. Они действуют как посредники между компьютером и двигателем и должны подбираться по напряжению и уровню мощности, типу сигнала (аналоговый и цифровой). Тип двигателя является самым важным фактором при выборе драйвера. В униполярном или биполярном двигателе ток проходит только в одном направлении по обмотке. Биполярные шаговые двигатели имеют две обмотки через которые ток проходит поочередно. Шаговые двигатели с полным шагом приводятся в движение благодаря изменениям магнитного поля относительно ротора. Полушаговые двигатели в свою очередь действуют также, как двигатели с полным шагом однако угловое перемещение ротора составляет половину шага полношагового двигателя. На каждый второй шаг запитана лишь одна фаза, а в остальных случаях запитаны две. В результате угловое перемещение ротора составляет половину угла. Микрошаговые или минишаговые двигатели отличаются дискретным числом угловых перемещений угловых положений между каждым полным шагом. В драйверах минишаговых и микрошаговых двигателей используются электронные методы улучшения позиционного решения системы управления. Драйвера шаговых двигателей отличаются по электрическим характеристикам, параметрам управления, размерам и техническим характеристикам. Электрические характеристики включают в себя максимальное напряжение на входе, номинальную мощность, силу тока на выходе, максимальная сила тока на выходе, питание переменным и постоянным током. Драйвера для шаговых двигателей могут быть однофазными или трех фазными с частотой в 50, 60, или 400 Гц. Параметры управления включают в себя особенности установки и управления. В некоторых драйверах используются ручные средства управления типа кнопок, DIP-переключателей или потенциометров. В других используются джойстики, цифровые пульты управления, компьютерные интерфейсы, или слоты для карт PCMCIA (Международная ассоциация производителей карт памяти для персональных компьютеров). Программы контроля могут быть сохранены на передвижных, энергонезависимых носителях данных. Переносные блоки управления разработаны для управления с удаленных точек. Также доступно беспроводное и WEB управления. Форма драйверов позволяет сборку модуля в нескольких конфигурациях. Большинство устройств могут монтироваться на шасси, контактные DIN рельсы, панели, стойки, стены или печатные платы (PCB). Также возможна установка автономных устройств и интегральных микросхем, которые монтируются на печатные платы. Особенности драйверов: подавление резонанса; вспомогательные входы/выходы (I/O); мягкий старт; автонастройка, самодиагностика и проверка состояния; а так же сигнализация в таких случаях как перенапряжение.
В драйверах используют много различных типов шин и коммуникационных систем. Шинные типы: (ATA), (PCI), (IDE), (ISA), (GPIB), (USB) и (VMEbus). Коммуникационные стандарты: ARCNET, AS-i, Beckhoff I/O, CANbus, CANopen, DeviceNet, Ethernet, (SCSI) и (SDS). Также доступно большое количество последовательных и параллельных интерфейсов. Соответствующая статья поможет подобрать драйвер.

Вопрос : Как узнать, подходит ли двигатель А к драйверу Б

Ответ: Чтобы это узнать, сделайте следующее:
1) проверьте, может ли драйвер выдавать ток фазы, равный(или примерно равный)току, указанному производителем двигателя. Если ток драйвера заметно меньше тока фазы двигателя — драйвер не подходит.
2) Вычислите максимальное напряжение питания двигателя по формуле Umax = 32 * sqrt (L), где L — индуктивность обмоток двигателя в миллигенри(указывается производителем). Желательно, чтобы максимально допустимое напряжение питания драйвера было примерно равно этому значению, или было немного больше. Если это условие не выполняется, то скорее всего двигатель вращаться будет, но больших скоростей достичь не удастся.

Пример:подходит ли UIM24008 для двигателя ST86-150? Ток обмотки двигателя — 5.6 А, ток, выдаваемый драйвером — до 8А, первое условия выполнено. Индуктивность двигателя — 9.2 мГн, по формуле получаем Umax = 32 * sqrt(9.2) = 97 Вольт. Максимальное напряжение питания драйвера — всего 40 Вольт. Это означает, что двигатель будет отдавать момент только на низких оборотах, а для получения качественного движения необходимо использовать или драйвер с напряжением питания до 80-90 Вольт (например, AM882 или YKC2608M-H), или двигатель с меньшей индуктивностью, например ST86-80.

Вопрос : У меня перегревается двигатель, что делать?

Ответ: Для начала надо определить, действительно ли двигатель перегревается. Многие воспринимают рабочую температуру двигателя как перегрев, потому что её «не терпит рука», тогда как нагрев до 80 градусов — рабочая ситуация для шагового двигателя. Необходимо замерить реальную температуру. Если она меньше 70 градусов — беспокоиться не стоит. Если между 70 и 80 — Ваш двигатель работает на пределе температурного режима, но тоже особых поводов для беспокойства нет. Если больше 80 — первое, что необходимо проверить, это выставленный рабочий ток на драйвере. Он должен соответствовать номинальному току двигателя, или быть чуть-чуть меньше Также можно использовать функцию снижения тока обмоток в режиме удержания. К снижению нагрева приводит и снижение питающего напряжения, однако, и момент на высоких оборотах тоже снизится. Если нет возможности жертвовать динамикой двигателя, остается единственный способ — установить на корпус ШД радиатор и/или вентилятор.

Вопрос : Шаговый двигатель постоянно пропускает шаги. Что делать?

Ответ: Пропуск шагов — самая неприятная проблема у шаговых приводов. Причин может быть множество. В порядке убывания распространенности

  1. Некачественный блок управления двигателем(драйвер). Не стоит недооценивать сложность управления шаговым двигателем. Разница в работе драйвера Leadshine и кустарной поделки — очень велика. Особенно это заметно при работе в области резонанса.
  2. Неверные настройки драйвера. Неверно выбранный ток и прочие опции — могут приводить к пропуску шагов. Проверьте все настройки еще раз.
  3. Недостаточное напряжение питания. С повышением скорости врашения ШД теряет динамику. Чем выше напряжение — тем выше можно добиться скорости вращения без пропусков шагов.
  4. Двигатель перегружен. Нагрузка на двигатель слишком велика. Снизьте ускорение и скорость или поставьте двигатель побольше.
  5. Механическая часть(направляющие, передачи) подклинивает
  6. Дребезг на контактах управляющих сигналов STEP/DIR или наводки от инвертора/плазмотрона.
  7. Проблемы с генерацией сигналов STEP/DIR. Это целое отдельное семейство проблем, которое достойно отдельного обсуждения. Три самых распространенных проблемы — малая длительность сигналов(для драйверов указывается рекомендуемая длительность импульса), слишком растянутый фронт импульса, или слишком поздняя смена DIR при смене направления движения(эта проблема есть у Mach3 при работе от LPT) — при использовании медленных оптопар это приводит к тому, что драйвер делает еще один шаг в том же направлении, тогда как должен уже шагать в противоположном.
  8. Бракованный драйвер(например, входная оптопара не успевает отрабатывать фронты сигнала).
  9. Бракованный двигатель. Прозвоните обмотки, проверьте их сопротивление(должно совпадать с паспортным). Проверьте вращение вала рукой — при разомкнутых обмотках вал отключенного двигателя должен вращаться легко и беззвучно, при замкнутых накоротко вал крутиться не должен.
  10. Иногда за пропуск шагов принимают проскальзывание шестерни на валу или муфты, соединяющей вал двигателя с винтом передачи.
Читайте также:  Решение задач по 2 закону кирхгофа расчет цепи постоянного тока

Источник

cnc-club.ru

Статьи, обзоры, цены на станки и комплектующие.

Расчет напряжения для шаговых двигателей

Аватара пользователя

Расчет напряжения для шаговых двигателей

Сообщение Nick » 22 дек 2011, 21:07

Расчет шагового двигателя

Какое напряжение должно быть у источника питания?

Чтобы рассчитать необходимое напряжение эмпирическим способом, возьмем источник питания 24В или любой другой источник, который есть у вас под рукой, и который будет выше необходимого минимума драйвера и подключим его к самой нагруженной оси.

Погоняйте ось и плавно увеличивайте скорость пока не определите максимальную скорость на которой шаговый двигатель будет работать без пропуска шагов, для тестового источник питания.

Используя следующую формулу вы можете определить необходимое напряжение питания для этой оси:
(Скорость которую вы хотите)÷(Скорость, которую вы получили * 0.9) * (Тестовое напряжение) = Необходимое напряжение питания.

Пример: (300 IPM ÷ (150IPM * 0.9) * 24VDC = 53.3VDC

Удостоверьтесь что полученное напряжение питания находится в допустимых пределах для вашего драйвера!

Какое напряжение питания у моего Шагового двигателя?

Вычисление максимального напряжения для заданной индуктивности ШД

Чтобы вычислить максимальное напряжение которое вам следует использовать в зависимости от индуктивности обмоток шагового двигателя используйте эту формулу:
Максимальное напряжение = 1000 * SQRT(Индуктивность)
(SQRT — это квадратный корень.)
Пример, двигатель с 6мГн на фазу:
1000 * SQRT(0.006) = 77В Максимум.
Пример мотора с 2.5мГн:
1000 * SQRT(0.0025) = 50В Максимум.

Замечание: Не все моторы одинаково созданы одинаковыми .

Если вы используете эту формулу и двигатели кажутся слишком горячими, уменьшите напряжение пока температура не станет приемлемой. Шаговые двигатели разработаны для работы горячими, но не стоит прованивать помещение горелой изоляцией . Многие двигатели рассчитаны на выдерживание температуры до 80 o С. Для моих личных целей я ограничиваю температуру в 60 o C.

Вычисление Сопротивления и мощности рассеивания ток-ограничивающих резисторов

Замечение: Только для L/R систем.

Это простое применение закона Ома для последовательной цепи. Ваш резистор должен сбрасывать разницу в напряжении между расчетного напряжения шагового двигателя и напряжением источника питания:
Изменение напряжения на резисторе = Напряжение источника питания — расчетное напряжение шагового двигателя.

Применяя закон Ома, делим на ток шагового двигателя получаем сопротивление резистора:
Значение резистора = Изменение напряжения на резисторе / Ток обмоток ШД.

Наконец, и это очень важно, вам нужно знать мощность рассеивания резистора которые он будет рассеивать в виде тепла, на которую он должен быть рассчитан.
Значение мощности рассеивания резистора = Изменение напряжения на резисторе * Ток обмоток шагового двигателя.

Например: Шаговый двигатель промаркирован 5A на 2.5V, с источником питания в 26В имеем:
Изменение напряжения на резисторе = 26В — 2.5В = 23.5В
Сопротивление резистора = 23.5В / 5А = 4.7 Ом
Мощность рассеивания резистора = 23.5В * 5А = 117.5 Ватт

Источник



О шаговых двигателях и том, как их есть

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Выходит, что чем мельче шаг, тем круче и точнее? Нет! Шаг в 1.8 градуса это всё, что вам нужно. Не буду сейчас приводить таблицы и примеры расчёта перемещений исполнительных механизмов на разных моделях принтеров и разных кинематиках. Поверьте мне на слово, лучше смотрите на погрешность шага, пользы будет больше. 5% — очень и очень хороший показатель.

И тут можно задаться вопросом, — ‘а как же напряжение?’. Напряжение особой роли не играет, т.к. его регулирует драйвер шагового двигателя, что бы поддерживать необходимый ток. Но знайте меру. 3V — 5V вполне достаточно, 3.4V, наверное, в самый раз.

Есть ещё такой параметр, как количество фаз. Ну, если совсем просто, то это сколько контактов/проводов торчит из двигателя. По хорошему, нам для принтера нужны биполярные двигатели с 4-мя фазами (проводами). Но существуют и с 6-тью и, даже, с 8-мью. Последние — экзотика в наших краях (ну я по крайней мере вообще их в руках не держал). А вот те, что с 6-тью проводами — те встречаются. Если просто, то это тоже самое, что и с 4-мя, но на обеих обмотках есть центральный отвод. Более наглядно можно посмотреть на иллюстрации, которую я честно где-то стырил.

Но я так и не сказал, что брать? Если есть 4-выводной, берём его, если нет, не расстраиваемся и берём 6-выводной. Но лучше берите 4-выводной (мороки меньше). Кстати, на картинке 8-выводной двигатель показан в режиме, когда у него пары обмоток подключены параллельно.

О чём ещё не сказал? О размерах? Ну разве ими кого-то удивишь? Наш типоразмер это Nema17, тут ничего нового. Можно и другие, но это уже снова экзотика.

Ну и последнее. Вот я купил двигатель, а дальше что? Как на нём правильно настроит ток? А всё очень просто, я уже поверхностно описывал этот процесс в одном из своих постов. Нам понадобится мультиметр, отвёртка и немного математики. Настройка тока производится методом кручения подсроечника на драйвере и снятия контрольного напряжения. Напряжение можно снимать — как на картинке.

А дальше считаем по формуле, какое контрольное напряжение (Vr) нам надо выставить. Формула различается для разных драйверов.

Vr = Номинальный ток / 2,5

Для двигателя с номинальным током 1.7А: Vr = 1.7A / 2 .5 = 0.68V

Vr = Номинальный ток / 2

Для двигателя с номинальным током 1.7А: Vr = 1.7A / 2 = 0,85V

Источник