Меню

Сдвиг фаз между током напряжением формула

Сдвиг фаз между током напряжением формула

§ 58. Цепь переменного тока с параллельно соединенными сопротивлениями

На рис. 61 изображена цепь переменного тока, в которую включены параллельно две катушки. Каждая из этих катушек обладает соответственно активным сопротивлением r1, и r2 и индуктивным сопротивлением XL1 и XL2.

Полное сопротивление первой катушки

Полное сопротивление второй катушки

Напряжение на зажимах катушек равно напряжению генератора.
Сила тока в каждой катушке определяется согласно закону Ома:

Из этих равенств можно сделать вывод, что в такой цепи токи разветвляются обратно пропорционально полным сопротивлениям ветвей.
Для определения угла сдвига фаз между напряжением и током в каждой катушке вычисляют и по таблице тригонометрических функций определяют значения углов φ1 и φ2.
Чем больше угол сдвига фаз между напряжением и током, тем больше реактивный ток и меньше активный, тем хуже используется электрический ток в данной установке, ниже ее коэффициент мощности (cos φ).
Так как первый закон Кирхгофа справедлив для цепей переменного тока, то в рассматриваемой цепи общий ток определяется геометрическим сложением векторов (рис. 61, б).
По горизонтали в выбранном масштабе отложим вектор напряжения Так как ток в цепи с индуктивностью отстает от напряжения, то вектор тока I1 в выбранном масштабе отложим с помощью транспортира под углом φ1 к вектору напряжения , а вектор тока I2 отложим под углом φ2. Общий ток в цепи будет равен сумме векторов тока I1 и I2, который определяется с учетом выбранного масштаба.
Чтобы найти общий ток, нужно воспользоваться тем, что активная составляющая общего тока — общий активный ток равен сумме активных токов ветвей:

а общий реактивный ток — сумме реактивных токов ветвей (если все эти реактивные токи, отстающие по фазе или все опережающие):

После чего определяют общий ток:

Угол сдвига фаз между общим током и напряжением φ находят по векторной диаграмме.

Пример. Три катушки соединены параллельно и к ним подключено переменное напряжение U = 100 в. Частота тока 50 гц. Активное сопротивление катушки r1 = 2 ом; r2 = 3 ом; r3 = 4 ом.
Индуктивность катушек L1 = 0,04 гн; L2 = 0,03 гн; L3 = 0,01 гн.
Вычислить силу тока в каждой катушке и общий ток в цепи, а также угол сдвига фаз между током и напряжением.
Решение .
Индуктивное сопротивление катушек:

XL1 = 2πfL1 = 2 · 3,14 · 50 · 0,004 = 12,56 ом;
XL2 = 2πfL2 = 2 · 3,14 · 50 · 0,003 = 9,42 ом;
XL3 = 2πfL3 = 2 · 3,14 · 50 · 0,004 = 3,14 ом.

Полное сопротивление каждой катушки:

Сила тока в катушках:

Общий ток в цепи равен векторной сумме токов.
Для определения угла сцвига фаз между током и напряжением каждой ветви вычисляют:

По таблице тригонометрических функций находят, что если cos φ1 = 0,157, то угол сдвига фаз в первой ветви φ1 = 80°55′; если cos φ2 = 0,305, то угол сдвига фаз φ2 = 72° 15′; если cos φ3 = 0,79, то угол φ3 = 37°50′.
Зная угол сдвига фаз между током и напряжением для каждой ветви, построим векторную диаграмму токов и напряжения и определим по ней общую силу тока в цепи.
Для этого отложим по горизонтали в выбранном масштабе вектор напряжения .
Под углом φ1 = 80°55′ с помощью транспортира отложим вектор тока I1 = 7,85 а.
Под углом φ2 = 72° 15′ (к горизонтами) от/ожим вектор I2 = 10,15 а как продолжение вектора I1.
Под углом φ2 = 37°50′ (к горизонтали) отложим вектор I3 = 19,7 а как продолжение вектора I2. Общий ток равен длине вектора I с учетом выбранного масштаба, который соединяет начало вектора I1 и конец, вектора I3. Для нашего примера он равен 35,5 а. Общий угол сдвига фаз между током I и напряжением U измеряют с помощью транспортира, он равен 56°.

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

Читайте также:  Обними меня ток не крепко

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Сдвиг фаз между током напряжением формула

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

Читайте также:  Погрешность трансформаторов тока для схем рза должна быть

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе.

Читайте также:  Удельное сопротивление растекания тока в заземлителях

Если активным сопротивлением цепи нельзя пренебречь по сравнению с емкостным , то ток опережает напряжение по времени меньше, чем на (сдвиг фаз меньше , рис. 308). Для этого случая, как показывает расчет, сдвиг фаз может быть вычислен по формуле

При имеем и , как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

Источник



Угол сдвига фаз между током и напряжением

Угол сдвига фаз между током и напряжением

Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

Фазометр может производить измерение угла сдвига в границах от 0 о до 360 о в некоторых случаях от -180 о С до +180 о С, а диапазон измеряемых частот сигналов может колебаться от 20Гц до 20 ГГц. Измерение гарантируется в том случае если напряжение входного сигнала равно от 1 мВ до 100 В, если же напряжение входного сигнала превышает эти границы точность измерения не гарантируется.

Методы измерения угла сдвига фаз

Существует несколько способов измерения угла сдвига фаз, это:

  1. Использование двухлучевого или двухканального осциллографа.
  2. Компенсационный метод основан на сравнении измеряемого фазового сдвига, с фазовым сдвигом, который предоставляется образцовым фазовращателем.
  3. Суммарно-разностный метод, он заключается в использовании гармонических или сформированных прямоугольных сигналов.
  4. Преобразование сдвига фаз во временном интервале.

Как измеряется угол сдвига фаз осциллографом

Осциллографический способ можно отнести к самому простейшему с погрешностью в районе 5 о . Определение сдвига осуществляется при помощи осциллограмм. Существует четыре осциллографических метода:

  1. Применение линейной развертки.
  2. Метод эллипса.
  3. Метод круговой развертки.
  4. Использование яркостных меток.

Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

Угол сдвига фаз напряжений, измеряемый по эталонному источнику частоты и при использовании измерительного органа лает возможность обеспечить точность всех последующих измерений. Фазные напряжения и угол сдвига фаз зависят от нагрузки, так симметричная нагрузка обуславливает равенство фазного напряжения , токов нагрузки и угол фазного сдвига, также будет равна нагрузка по потребляемой мощности на всех фазах электроустановки.

Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

Как вывод, можно сказать, что:

  1. Составляющие элементы комплексного сопротивления, такие как резистор и емкость, а также проводимость не будут взаимообратными величинами.
  2. Отсутствие одного из элементов делает резистивные и реактивные значения, которые входят в состав комплексного сопротивления и проводимости и делают их величинами взаимообратными.
  3. Реактивные величины в комплексном сопротивлении и проводимости используются с противоположным знаком.

Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

Источник