Меню

Регулирование скорости двигателя постоянного тока смешанного возбуждения

Регулирование скорости двигателей постоянного тока

Регулирование скорости двигателей постоянного токаИз уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:

1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,

2) регулирование за счет изменения потока возбуждения двигателя Ф,

3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U . Ток в цепи якоря I я и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.

Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря . Схема включения двигателя для этого случая представлена на рис. 1 , а электромеханические и механические характеристики — на рис. 2 , а.

Схема включения двигателя постоянного тока независимого возбуждения

Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения

Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.

Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен ( D = 2 — З).

Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.

Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.

Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.

Регулирование скорости двигателей постоянного токаПри втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.

При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 — 4 .

Механические характеристики для различных значений потока двигателя приведены на рис. 2 , а и 2 , б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.

Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.

Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.

При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и U ном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

Источник

Управление возбуждением двигателей постоянного тока

Управление двигателями постоянного тока

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого (рис.1), параллельного (рис.2), последовательного (рис.3) и смешанного (рис.4) возбуждения. При параллельном, последовательном и смешанном возбуждении напряжение на обмотке возбуждения зависит от напряжения на обмотке якоря, при независимой системе возбуждения, обмотка возбуждения питается от дополнительного источника постоянного тока и не зависит от режима работы и нагрузки двигателя.

Рис.1 Схема независимого возбуждения

Рис.2 Схема параллельного возбуждения

Рис.3 Схема последовательного возбуждения

Рис.4 Схема смешанного возбуждения

Для регулирования скорости двигателей постоянного тока применяют различные способы.
В общем случае скорость двигателя определяется выражением:

Как видно из выражения (1.1), регулировать скорость двигателя постоянного тока возможно двумя способами:

— Изменением питающего напряжения U

— Изменением магнитного потока машины Ф (изменением тока возбуждения)

Раньше регулирование питающего напряжения встречало трудности связанные с преобразованием напряжения постоянного тока, изменение скорости вращения двигателя осуществлялось с помощью включения в цепь якоря дополнительного регулировочного реостата. Основными недостатками этого метода являются потери в реостате, через который протекает ток полной нагрузки двигателя, неудобство управления.

Наиболее удобным, распространенным и экономичным способом регулирования скорости вращения двигателя постоянного тока, является изменение магнитного потока машины (изменение тока возбуждения). Экономия связана с тем, что в данном случае управлять можно не большим током якоря, а малым током возбуждения, что уменьшает потери и удешевляет систему управления. Однако этот способ позволяет лишь увеличивать скорость вращения двигателя.

Читайте также:  Кто открыл двигатель постоянного тока

Согласно выражению (1.1), с уменьшением Ф скорость возрастает (рис.5). Двигатели рассчитываются для работы при номинальном режиме с наибольшим значением Ф, т. е. с наименьшей величиной n. При таком регулировании к. п. д. двигателя остается высоким, так как мощность возбуждения мала, и потери при регулировании минимальны. Максимальная скорость вращения в данном случае ограничивается механической прочностью машины и условиями ее коммутации.

Рис.5 Характеристики ДПТ при регулировании тока возбуждения

Современные способы регулирования скорости двигателей постоянного тока

Сегодня основным средством управления двигателями постоянного тока становятся современные тиристорные регуляторы (назовем их “приводы постоянного тока”), их производят множество фирм, специализирующихся на приводной технике (например, Control Techniques, Siemens, Sprint-Electric и т.д.). Современные приводы постоянного тока позволяют управлять не только скоростью вращения двигателя, но и его моментом (например, на линиях намотки). За счет различных интерфейсов обмена сигналами с автоматизированной системой управления, изменять параметры работы двигателя достаточно просто и удобно.

Приводы постоянного тока могут работать как в одном квадранте, так и во всех четырех, при этом изменяя не только ток обмотки якоря, но и ток обмотки возбуждения — многие приводы имеют встроенные “контроллеры поля”, что дает возможность регулировать скорость двигателя в самом широком диапазоне.

Следует отметить, что “ослабление” поля при задании скорости двигателя выше номинальной, привод производит автоматически, контроллер поля представляет собой тот же тиристорный регулятор. Встроенные контроллеры поля имеют приводы Mentor, Mentor MP (Control Techniques), PL, PLX (Sprint-Electric). Остальные модели приводов постоянного тока этих брендов для питания обмотки возбуждения двигателей имеют неуправляемые выпрямители.

Номинальный ток контроллеров возбуждения приводов постоянного тока имеют следующие значения:
Sprint-Electric PL, PLX — 8A (для приводов с номинальным током якоря 12-123A), 16A (для приводов с номинальным током якоря 155-330A), 32A (для приводов с номинальным током якоря 430-630A).

Control Techniques Mentor — M25(R) — M210(R) — 8 А, остальные габариты с неуправляемым выпрямителем.
Control Techniques Mentor MP —
MP25Ax(R), MP45Ax(R), MP75Ax(R), MP105Ax(R), MP155Ax(R), MP210Ax(R) — 8А
MP350Ax(R), MP420Ax(R), MP550Ax(R), MP700Ax(R), MP825Ax(R), MP900Ax(R) — 10A
MP1200Ax(R), MP1850Ax(R) — 20А.

Для токов обмотки возбуждения имеющих значение свыше 8А, Control Techniques предлагает внешние контроллеры поля, которые связываются с приводом постоянного тока по цифровой шине — это контроллеры FXM-5 (до 90А) и FXMP-25 (до 25А).

На практике часто встречаются двигатели с низковольтными обмотками возбуждения с большими токами. В данном случае, для изменения тока можно применить приводы постоянного тока, при этом вместо обмотки якоря подключить обмотку возбуждения. Это может быть любой аналоговый или цифровой привод постоянного тока. При использовании в качестве регуляторов поля простых аналоговых преобразователей Sprint-Electric (модели 340, 680, 1220, 340i, 680i, 1220i, 370, 370E, 400E, 800E, 1200E, 400, 800, 1200, 400i, 1600i, 3200i, SL, SLE), производитель рекомендует настраивать их в режим управления моментом.
Привод Mentor MP (Control Techniques) имеет для этого специальный режим.

Источник

Регулирование скорости двигателя постоянного тока смешанного возбуждения

Главная Электродвигатели Электродвигатели со смешанным возбуждением Регулирование скорости вращения электродвигателя постоянного тока со смешанным возбуждением

Из выражений (73) и (74) видно, что скорость вращения двигателей смешанного возбуждения можно регулировать тремя способами, рассмотренными выше для электродвигателей параллельного возбуждения, а именно: регулированием подве­денного напряжения, изменением сопротивления цепи якоря и изменением потока возбуждения.

Первый способ применим лишь в системе Г—Д, когда электродвигатель питается от отдельного генератора. В этом случае, изменяя ток возбуждения генератора, можно добиться изменения его напряжения, что приводит [см. уравнения (71) — (74)] к изменению числа оборотов электродвигателя.

Наибольшее распространение на практике получил второй способ, позволяющий плавно и в достаточно широких пределах регулировать скорость вращения электродвигателей постоянно­го тока. Основной его недостаток — большие потери энергии в регулировочных реостатах, а также громоздкость и значитель­ный вес последних. При данном способе регулирования уравне­ния скоростной и механической характеристик будут практиче­ски те же, что и для электродвигателей последовательного и параллельного возбуждения [см. уравнения (75) и (76)].

Уравнения показывают, что на величину скорости холостого хода n = U / cФ ШОВ дополнительное сопротивление R в цепи якоря влияния не оказывает, поэтому все искусственные характери­стики исходят из одной точки n на оси ординат (рис. 36). Мяг­кость их определяется величиной сопротивления, включаемого в цепь якоря. Чем больше величина сопротивления R, тем зна­чительней падение напряжения в якорной цепи и тем мягче искусственная характеристика. При переключении сопротив­лений переход с одной характеристики на другую происходит так, как описывалось выше.

Наиболее экономичным способом регулирования скорости вращения является третий способ — изменение потока возбужде­ния электродвигателя. Такое регули­рование осуществляется введением в цепь параллельной обмотки воз­буждения ШОВ регулировочного ре­остата РР (рис. 37, а). Очевидно, что при полностью выведенном рео­стате РР электродвигатель работа­ет на естественной характеристике а (рис. 37, б). При введении же различных сопротивлений в цепь обмотки ШОВ величина магнитного потока возбуждения изменяется и соответственно меняется скорость вращения электродвигателя.

Регулирование скорости данным способом возможно лишь только вверх от номинальной, так как искусственные характе­ристики, получаемые при введении различных сопротивлении в цепь параллельной обмотки возбуждения, располагаются выше естественной характеристики. Это является одним из существенных недостатков данного способа регулирования скорости. Если учесть, что введение дополнительного сопротив­ления в цепь параллельной обмотки возбуждения приводит к снижению полезного магнитного потока машины, а это, в свою очередь, влечет за собой снижение вращающего момента, развиваемого электродвигателем, то нетрудно понять, что дан­ный способ регулирования скорости применим лишь в случаях малозагруженных электродвигателей, например, при подъеме или спуске легких грузов или грузозахватного приспособления.

Читайте также:  Мощность в цепях постоянного тока электротехника

Приведенные на рис. 37, б характеристики, соответствую­щие рассматриваемому способу регулирования скорости, пере­секают ось ординат в различных точках. Это объясняется тем, что при введении дополнительных сопротивлений в цепь обмот­ки возбуждения скорость холостого хода не остается постоян­ной. Она тем выше, чем больше величина сопротивления в цепи обмотки возбуждения [см. формулу (75)].

Характеристики, приведенные на рис. 37, б, имеют сходя­щийся характер, т. е. по мере снижения магнитного потока же­сткость характеристик электродвигателя уменьшается, что, как уже указывалось, объясняется влиянием реакции якоря при значительных нагрузках.

Значительная индуктивность параллельной обмотки возбуж­дения приводит к тому, что переход с одной характеристики на другую при данном способе регулирования скорости проис­ходит по так называемым динамическим характеристикам (см. пунктир на рис. 37, б), которые можно построить после расчета переходных процессов.

Источник



Механические характеристики и способы регулирования скорости двигателей постоянного тока последовательного и смешанного возбуждения

4.1 Электромеханические и механические характеристики ДПТ последовательного возбуждения (ПВ)

Схема подключения ДПТ ПВ приведена на рис. 4.1. В отличие от ДПТ независимого возбуждения здесь обмотка возбуждения ОВМ включена последовательно с якорем и через ОВМ протекает ток якоря Iя.

Исходные выражения для электромеханической, механической характеристик и момента ДПТ ПВ можно записать в том же виде, что и для ДПТ независимого возбуждения (см. уравнения (2.3) — (2.5)):

В отличие от ДПТ НВ в этих выражениях сопротивление Rя включает в себя и сопротивление обмотки возбуждения. Второе, наиболее важное отличие, заключается в том, что магнитный поток Φ является функцией тока якоря. Зависимость магнитного потока Φ от тока не является аналитической кривой (рис. 4.2), что не позволяет получить аналитические выражения для электромеханической и механической характеристик ДПТ ПВ. Приведенные уравнения позволяют провести лишь качественный анализ.

Естественные электромеханическая и механическая характеристики двигателя показаны на рис. 4.2, рис. 4.3, кривые 1. Очевидно, что при Iя=0 магнитный поток также равен нулю, и угловая скорость за счет первого слагаемого в выражениях (4.1) стремится к бесконечности (как говорят, двигатель идет «вразнос»), т. е. режим холостого хода для ДПТ ПВ является недопустимым.

При возрастании тока якоря магнитный поток Ф вначале растет примерно пропорционально току якоря, а скорость резко снижается (крутопадающий участок на характеристиках).

При больших токах двигатель работает в зоне, близкой к насыщению, поэтому его магнитный поток здесь мало меняется при изменении тока и характеристика становится более жесткой, приближаясь по виду к характеристике ДПТ НВ.

На практике для расчетов используют так называемые универсальные характеристики ДПТ ПВ, которые приводятся в каталогах.

4.2 Способы регулирования угловой скорости ДПТ ПВ

Для ДПТ ПВ, как и для ДПТ НВ, возможны три основных способа регулирования скорости: 1) введением добавочных сопротивлений в цепь якоря; 2) изменением подводимого напряжения; 3) изменением потока возбуждения.

Регулирование угловой скорости введением добавочных сопротивлений является простейшим способом регулирования и широко используется в подъемных и транспортных механизмах. Как следует из уравнений (4.1), при увеличении добавочного сопротивления Rд второе слагаемое в этих выражениях увеличивается, т.е. увеличивается падение скорости от нагрузки. Соответственно электромеханическая и механическая характеристики в области больших токов становятся более крутопадающими (кривые 2 на рис. 4.2, рис. 4.3 — характеристики с Rд). Введение добавочных сопротивлений в цепь якоря ДПТ ПВ позволяет, как и для ДПТ НВ, регулировать скорость в относительно небольшом диапазоне и ограничить ток якоря при пуске. Обычно величину добавочных сопротивлений изменяют ступенями с помощью релейно-контакторной аппаратуры, как изложено в п. 2.2.

Основные недостатки такого регулирования – значительные потери энергии в добавочном сопротивлении, небольшой диапазон регулирования, ступенчатость регулирования.

Регулирование угловой скорости изменением подводимого напряжения может быть осуществлено так же, как для ДПТ НВ, с помощью отдельного генератора или тиристорного преобразователя. Регулирование ведется уменьшением подводимого напряжения и приводит, как следует из уравнений (4.1), к снижению скорости. В транспортных механизмах часто два тяговых двигателя одинаковой мощности работают как многодвигательный электропривод (например двухосный тяговый электропривод). При этом появляется дополнительная возможность ступенчатого изменения подводимого к двигателю напряжения за счет переключения двигателей с последовательного включения на параллельное. При последовательном включении на каждый двигатель приходится половина напряжения сети. Когда двигатели подключаются параллельно, каждый из них оказывается включенным на полное напряжение сети. Такое регулирование позволяет исключить нерациональную трату энергии.

Регулирование угловой скорости ослаблением потока возбуждения позволяет, как и для ДПТ НВ, получить скорости выше основной. Действительно, как следует из уравнений (4.1), уменьшение потока Φ приводит при том же токе якоря к возрастанию первого слагаемого. Ослабление потока возбуждения обычно осуществляют за счет шунтирования обмотки возбуждения добавочным сопротивлением.

Из анализа механических характеристик ДПТ ПВ следует, что они являются весьма удобными для электрической тяги (трамвай, метро, троллейбус, электровозы, тепловозы) и подъемных механизмов по следующим соображениям:

1) двигатель имеет низкую скорость при больших нагрузках и высокую — при малых, тем самым обеспечивается естественное регулирование скорости движения при изменении сопротивления перемещению;

2) транспортные и грузоподъемные механизмы требуют больших начальных моментов при пуске, именно такие моменты обеспечивает ДПТ ПВ; у ДПТ НВ момент пропорционален току — М

I, а у двигателей последовательного возбуждения М

I 2 . А так как при пуске двигателя I = (1,5…2,0)Iн, то двигатели последовательного возбуждения развивают значительно больший пусковой момент по сравнению с ДПТ НВ;

Читайте также:  Знак класса защиты от поражения электрическим током

3) момент ДПТ ПВ не зависит от напряжения питающей сети, что особенно важно для электрической тяги, где в контактной сети могут возникать большие отклонения напряжения.

Основным недостатком характеристик ДПТ ПВ является неограниченное возрастание скорости при малых токах якоря и, как следствие, невозможность обеспечить режим генераторного торможения.

4.3 Тормозные режимы ДПТ ПВ

Для ДПТ ПВ возможны два тормозных режима: торможение противовключением и динамическое торможение.

При торможении противовключением в цепь якоря вводится добавочное сопротивление для ограничения тока якоря. Механические характеристики при этом являются продолжением характеристик двигательного режима в области отрицательной угловой скорости (см. рис. 4.2, рис. 4.3). Такой режим торможения, как и для ДПТ НВ, может возникать, когда момент на валу двигателя превышает значение М1 (рис. 4.3).

Динамическое торможение ДПТ ПВ может осуществляться двумя способами: с самовозбуждением и с независимым возбуждением. При использовании первого способа якорь и обмотка возбуждения отключаются от сети и замыкаются на добавочное сопротивление (рис. 4.4). При этом обмотку возбуждения или якорь переключают так, чтобы направление тока в обмотке возбуждения не изменилось. Если этого не сделать, то произойдет размагничивание машины.

При использовании второго способа — динамического торможения с независимым возбуждением — обмотку якоря замыкают на добавочное сопротивление, а на обмотку возбуждения подают напряжение от источника. Схема включения при этом аналогична схеме динамического торможения ДПТ НВ (рис. 2.14), аналогичны и получаемые тормозные характеристики.

Оба рассмотренных тормозных режима ДПТ ПВ малоэкономичны, так как энергия теряется на добавочных сопротивлениях.

В транспортных средствах очень важно обеспечить отдачу (рекуперацию) электроэнергии в сеть, например при движении на спуске. Однако, как уже отмечалось, генераторное торможение ДПТ ПВ невозможно. Чтобы решить эту проблему, в электротяге используют переключение обмотки возбуждения ДПТ с последовательного на независимое. Для этого отключают обмотку возбуждения от якоря и подают на нее через добавочное сопротивление напряжение сети. В результате машина работает с независимым возбуждением. Генераторное торможение такой машины рассмотрено в пп. 2.5, 3.5.

4.4 Механические характеристики и регулирование скорости ДТП смешанного возбуждения (СВ)

Схема подключения ДТП СВ приведена на рис. 4.5. Машина имеет две обмотки возбуждения: последовательную ОВМ1 и независимую ОВМ2.

Уравнения для электромеханической и механической характеристик двигателя аналогичны соответствующим уравнениям для ДТП ПВ:

Причем здесь магнитный поток определяется как сумма магнитных потоков Φ1 – обмотки ОВМ1 и Φ2 – ОВМ2:

Для ДТП СВ, в отличие от ДПТ ПВ, скорость идеального холостого хода имеет конечное значение и определяется потоком Φ2:

Механическая характеристика двигателя смешанного возбуждения (кривая 3 на рис. 4.6) занимает промежуточное положение между характеристикой ДПТ НВ – кривая 1 и характеристикой ДПТ ПВ – кривая 2. Скорость ДПТ СВ при малых нагрузках изменяется значительно. А при больших нагрузках характеристика достаточно жесткая и близка к линейной, как у ДПТ НВ (см. соответствующие пояснения в п.2.4.1).

Для ДПТ СВ возможны те же тормозные режимы, что и для ДПТ НВ: 1) генераторное; 2) динамическое; 3) противовключением.

Генераторное торможение соответствует участку характеристики при скорости больше ω0. При переходе в режим генераторного торможения ток в якоре и в обмотке последовательного возбуждения меняет свой знак, что может размагнитить машину. Поэтому при возрастании скорости до ω ОВМ1 обычно шунтируют, и машина работает как ДПТ НВ.

Для динамического торможения якорь двигателя замыкают на добавочное сопротивление, а ОВМ1 отключают, чтобы избежать размагничивания. В результате машина работает как ДПТ НВ и имеет такие же тормозные характеристики.

При торможении противовключением в цепь якоря вводят добавочное сопротивление, ограничивающее ток якоря. Характеристика при этом становится более мягкой (кривая 4 на рис. 4.6). Машина переходит в режим противовключения при отрицательных значениях скорости.

Регулирование скорости ДПТ СВ так же, как ДПТ ПВ, может осуществляться: 1) изменением подводимого напряжения; 2) введением добавочного сопротивления в цепь якоря; 3) изменением потока последовательной обмотки возбуждения. Кроме того, для ДПТ СВ появляется дополнительная возможность регулирования скорости изменением потока независимой обмотки возбуждения.

Из рассмотренного следует, что ДПТ СВ имеют характеристики, весьма удобные для тягового электропривода. По сравнению с ДПТ ПВ машины со смешанным возбуждением позволяют обеспечить генераторное торможение и регулирование скорости потоком обмотки независимого возбуждения.

ЗАКЛЮЧЕНИЕ

В настоящее время в промышленности и на транспорте в качестве регулируемого электропривода получил широкое применение электропривод постоянного тока, основные сведения о котором рассмотрены в учебном пособии.

Рассмотренные вопросы, конечно же, не исчерпывают всего многообразия применяемых и перспективных электромеханических преобразователей и электроприводов.

В 50-е годы прошлого столетия большие надежды возлагались на частотно-регулируемый электропривод с асинхронным двигателем с короткозамкнутым ротором.

Асинхронный двигатель по своим эксплуатационным свойствам, массогабаритным показателям значительно превосходит двигатель постоянного тока и имеет более низкую стоимость. Однако необходимость выпрямителей и достаточно сложных преобразователей частоты в значительной мере ослабляет эффект снижения стоимости и массогабаритных показателей регулируемого электропривода с асинхронным двигателем.

Поэтому регулируемый электропривод с машиной постоянного тока и в настоящее время во многих областях техники является конкурентоспособным с частотно-регулируемым электроприводом. Подтверждением этому может служить и тот факт, что с 60-х годов промышленно развитые страны каждые 5-7 лет в 2 раза увеличивают выпуск машин постоянного тока.

Известные достоинства коллекторных машин постоянного тока: высокая плотность энергии и отличные регулировочные характеристики, по-видимому, гарантируют их широкое использование в обозримом будущем.

Источник