Меню

Расчет цепей методом эквивалентного источника тока

Теорема об эквивалентном источнике тока

Ток в любой ветви «a-b» линейной электрической цепи не изменится, если электрическую цепь, к которой подключена данная ветвь, заменить эквивалентным источником тока. Ток этого источника должен быть равен току между зажимами a-b закороченными накоротко, а внутренняя проводимость источника тока должна равняться входной проводимости пассивной электрической цепи со стороны зажимов «a» и «b» при разомкнутой ветви «ab».

Рис.34 иллюстрирует эту теорему.

Действительно, из условия эквивалентности источников тока и напряжения следует: источник напряжения э.д.с. которого равна Uxx, а внутренне сопротивление равно r может быть заменен источником тока:

Jэкв., определенное по формуле (43), является током короткого замыкания, т.е. током, проходящим между зажимами «a-b», замкнутыми накоротко.

Искомый ток ветви «k» равен:

Методы решения задач, основанные на теоремах об эквивалентном источнике напряжения и об эквивалентном источнике тока, называются соответственно методом эквивалентного генератора и методом эквивалентного источника тока.

Эти методы используются в тех случаях, когда по условию задачи требуется рассчитать ток только одной ветви электрической цепи.

Порядок расчета задачи методом эквивалентного генератора:

1) разрывают выделенную ветвь схемы и путем расчета оставшейся части схемы одним из методов определяют Uxx на зажимах разомкнутой ветви;

2) определяют r (внутренне сопротивление эквивалентного источника) по отношению к зажимам выделенной ветви методом эквивалентных преобразований.

При этом обязательно изображается пассивная схема, где источники э.д.с. заменяются их внутренними сопротивлениями (если э.д.с. — идеальная, то участок ее подключения изображается короткозамкнутым), источники тока заменяются их внутренними проводимостями (ветви с идеальными источниками тока разрываются);

3) Определяют ток выделенной ветви по закону Ома:

Параметры эквивалентного генератора для реальной цепи могут быть получены на основе опытов холостого хода и короткого замыкания. Из опыта x.x. определяют Uxx, а из опыта к.з. – Ik.з. Внутреннее сопротивление источника: .

Пример: В цепи, изображенной на рис.1 измерено напряжение между зажимами a-b вольтметром с весьма большим сопротивлением: Uab=60B. Затем между зажимами a-b включили амперметр, сопротивлением которого можно пренебречь, ток, показанный амперметром I=1,5A. Сколько покажет вольтметр с сопротивлением RV=760(Ом), если его включить между зажимами a-b?

Решение: Решим задачу методом эквивалентного генератора. Генератором будем считать цепь, очерченную пунктиром. Пусть это будет генератор напряжения. Э.д.с. этого генератора, равная напряжению холостого хода, измерена вольтметром с большим внутренним сопротивлением. Следовательно Eэкв.=60B. Ток короткого замыкания показал амперметр: Iк.з.=1,5A. Но ток короткого замыкания ограничен только внутренним сопротивлением генератора. Следовательно, его внутренне сопротивление:

Если теперь к зажимам a-b подключить сопротивление RV=760(Ом), ток через это сопротивление будет равен:

А падение напряжения на этом сопротивлении:

Это напряжение покажет второй вольтметр.

Решим задачу, выбрав в качестве эквивалентного генератора генератор тока:

Параметрами генератора тока являются его задающий ток Jэкв. И внутренняя проводимость G. Задающий ток может быть измерен или определен как ток короткого замыкания: Jэкв.=Jк.з.=1,5(A).

Внутренняя проводимость может быть определена из опыта холостого хода, т.к. в этом опыте ток генератора замыкается только через G:

Эквивалентная проводимость цепи при подключенном вольтметре равна:

Напряжение между зажимами генератора при подключении второго вольтметра:

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Метод эквивалентного генератора

ads

Метод эквивалентного генератора применяется для определения тока одной из ветвей электрической цепи в том случае, когда расчет всей схемы не требуется. В основу метода положена теорема об активном двухполюснике (теорема Гельмгольца-Тевенена). Основная идея метода заключается в том, что часть цепи, параметры которой определять нет необходимости, заменяется эквивалентным генератором с известной эдс и сопротивлением. Метод часто применяется для расчета режима электрической цепи.

Алгоритм состоит из следующих шагов:

  1. Выбранная для расчета ветвь удаляется из схемы, а места образовавшегося разрыва обозначаются буквами. Оставшаяся часть схемы будет представлять собой эквивалентный генератор.
  2. Рассчитывается эквивалентная эдс генератора.
  3. Определяется эквивалентное сопротивление генератора.
  4. По найденным в пунктах 2 и 3 параметрам генератора определяется ток через исключенную в пункте 1 ветвь.
Читайте также:  Испытание высоковольтных трансформаторов тока

Метод эквивалентного генератора: примеры решения

Рассмотрим пример расчета электрической схемы методом эквивалентного генератора (рисунок 1).

Метод эквивалентного генератора

Рис. 1. Метод эквивалентного генератора

Допустим, что необходимо рассчитать ток Iab через резистор R4. Тогда преобразования схема будет иметь вид, представленный на рисунке 2.

Рис. 2. Эквивалентная электрическая схема

Рис. 2. Эквивалентная электрическая схема

После преобразования ток через резистор Rab (R4) определяется по формуле

Для того, чтобы рассчитать значения Еэкв и Rэкв необходимо рассмотреть режим холостого хода генератора. Для этого необходимо обеспечить его работу без нагрузки, то есть условно отсоединить от цепи исследуемую ветвь ab (рисунок 3).

Рис. 3. Режим холостого хода генератора

Рис. 3. Режим холостого хода генератора

Для представленной схемы напряжение Еэкв будет равно

Далее требуется определить эквивалентное сопротивление. Для этого воспользуемся методом пассивного двухполюсника. В этом случае необходимо исключить из схемы источник эдс и найти общее сопротивление цепи (рисунок 4).

Рис. 4. Схема без источника эдс

Рис. 4. Схема без источника эдс

Эквивалентное сопротивление полученной схемы определяется по формуле

Теперь можно определить ток, проходящий через резистор ab согласно выражению (1).

Источник

Метод эквивалентного генератора (эквивалентного источника). Применение математической программной среды MathCAD для расчета линейных цепей постоянного тока (главы 6-10 учебного пособия «Теоретические основы электротехники в примерах и задачах»)

Страницы работы

Содержание работы

6. МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА

(ЭКВИВАЛЕНТНОГО ИСТОЧНИКА)

Целесообразность использования данного метода становится очевидной, в случае если расчет электрической цепи ограничен в определении тока только одной ветви. В этом случае вся цепь относительно ветви с интересующим током заменяется эквивалентной схемой. Таким образом, основной расчет сводится к определению двух параметров эквивалентной схемы – ЭДС и сопротивления эквивалентного генератора.

Для схемы цепи (рис. 6.1) методом эквивалентного генератора найти ток ветви с сопротивлением , если , , , , , , .

Рис. 6.1. Рис. 6.2.

1. Выделим ветвь с сопротивлением и обозначим ток (рис.6.1) .

2. Всю цепь, рис. 6.1, относительно ветви с сопротивлением , представим эквивалентным генератором с источником ЭДС равным и сопротивлением (рис. 6.2).

Согласно схеме (рис. 6.2) интересующий ток в ветви определиться как

т.е. решение задачи сводится к определению двух параметров эквивалентного генератора и .

3. Найдем ЭДС генератора. По определению равно напряжению между узловыми точками 1 и 2 разомкнутой ветви с сопротивлением (рис. 6.3).

Рис. 6.3. Рис. 6.4.

Для этого в схеме (рис. 6.3) определим токи и . На основании законов Кирхгофа получим систему:

Из системы найдем

На основании второго закона Кирхгофа для указанного в схеме (рис. 6.3) направления обхода контура получим

4. Найдем сопротивление генератора. По определению равно входному сопротивлению между узловыми точками 1 и 2 разомкнутой ветви с (рис. 6.3). Расчет сопротивления производим при закороченных источниках ЭДС , и разомкнутом источнике тока , рис. 6.4.

5. Окончательно определяем ток :

Определить методом эквивалентного генератора ток в ветви с источником ЭДС (рис. 6.5). Дано: , , , , , , .

Рис. 6.5. Рис. 6.6.

1. Обозначим ток в ветви с источником ЭДС (рис. 6.5).

2. Применив теорему об эквивалентном генераторе, ток в ветви, имеющей нулевое сопротивление согласно схеме (рис. 6.6):

3. Найдем ЭДС генератора. Разомкнем ветвь с источником (рис.6.7) и найдем напряжение между точками 1 и 2.

Предварительно выполним расчет токов и в схеме (рис. 6.7).

Рис. 6.7. Рис. 6.8.

Ток в неразветвленной части схемы

Токи и в разветвленной части схемы:

На основании второго закона Кирхгофа для обозначенного на схеме (рис. 6.7) контура запишем:

4. Найдем сопротивление генератора , которое равно входному сопротивлению между точками 1 и 2 (рис. 6.8) (при замкнутых источниках ЭДС , ).

Читайте также:  Какая величина тока считается чувствительной для человека

Преобразуем треугольник сопротивлений , и (рис.6.8) в эквивалентную звезду (рис. 6.9).

Величины сопротивлений эквивалентной звезды (рис. 6.9):

Согласно выполненным преобразованиям окончательно получим (рис. 6.9):

5. Ток в ветви с источником определится как

Задачи для самостоятельного решения

Задача 6.3. Методом эквивалентного генератора для схемы (рис. 6.10) определить ток в ветви с сопротивлением . Дано , , , , , .

Рис. 6.10. Рис. 6.11.

Задача 6.4. Для цепи (рис. 6.11) методом эквивалентного генератора определить ток в ветви с сопротивление , если , , , , .

Задача 6.5. Определить обозначенный в схеме (рис. 6.12) ток по методу эквивалентного генератора, если , , , , , , , .

Задача 6.6. Для схемы (рис. 6.13) методом эквивалентного генератора определить обозначенный в ветви ток, если , , , , , .

Рис. 6.12. Рис. 6.13.

Задача 6.6. Рассчитать обозначенный в схеме (рис. 6.14) ток, используя метод эквивалентного генератора, если , , , , , .

Задача 6.4. Для цепи (рис. 6.15) методом эквивалентного генератора определить ток в ветви с сопротивление , если , , , , , , , , .

Рис. 6.14. Рис. 6.15.

7. ПРИМЕНЕНИЕ ЭКВИВАЛЕНТНЫХ ПРЕОБРАЗОВАНИЙ ПРИ РАСЧЕТАХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Расчет сложных электрических цепей можно упростить путем различных эквивалентных преобразований активных участков схем содержащих ветви с идеальными источниками ЭДС и тока. В частях схемы не затронутых преобразованиями должно выполняться условие неизменности напряжений и токов ветвей. Упрощение расчета сводится, как правило, к уменьшению числа ветвей или узлов схемы и, в конечном счете, к сокращению расчетных уравнений.

Для цепи (рис.7.1) требуется определить показание вольтметра, если , , , , . Внутреннее сопротивление вольтметра принять .

Рис. 7.1. Рис. 7.2.

1. Преобразуем источники тока и (рис. 7.1) в эквивалентные источники ЭДС , (рис. 7.2).

2. Значения ЭДС эквивалентных источников:

3. Ток, протекающий в контуре (рис. 7.2) найдем на основании второго закона Кирхгофа

4. Показание вольтметра установленного в схеме будет соответствовать напряжению на сопротивлении :

Методом узловых потенциалов определить токи в ветвях с сопротивлениями и схемы (рис. 7.3) , если , , , , , , .

Рис. 7.3. Рис. 7.4. Рис. 7.5.

1. Чтобы уменьшить число узлов расчетной схемы и упростить расчет преобразуем источник тока в эквивалентные источники ЭДС.

Включая в узле 3 два равных и противоположно направленных источника тока , получим эквивалентную схему (рис. 7.4).

После преобразования источников тока в эквивалентные источники ЭДС получим эквивалентную схеме (рис.7.3) схему представленную на рис. 7.5.

2. Значения ЭДС эквивалентных источников:

3. Расчет токов преобразованной схемы (рис. 7.5) выполним методом двух узлов. Потенциал узловой точки 1 принимаем равным нулю ( ). Напряжение между узлами 3 и 1 найдем как

4. Интересующие в схеме токи

Определить показание амперметра для схемы рис. 7.6, если , , , , , , , , , .

Рис. 7.6. Рис. 7.7.

1. Для упрощения расчета воспользуемся преобразованиями активных участков схем с параллельными ветвями одной эквивалентной.

2. Эквивалентная ЭДС и эквивалентное сопротивление двух параллельных ветвей левой части схемы (рис. 7.6):

Источник



Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда » в эквивалентный «треугольник » и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

Читайте также:  Supra stv lc32550wl уменьшить ток подсветки

Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Задача 1. Для цепи (рис . 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом, R10= 20 Ом.

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

Задача 2. Для цепи (рис . 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

Исходную схему можно перечертить относительно входных зажимов (рис . 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивленияможно воспользоваться формулой:

где R – величина сопротивления, Ом;

n – количество параллельно соединенных сопротивлений.

Преобразуем соединение «треугольник » f−d−c в эквивалентную «звезду ». Определяем величины преобразованных сопротивлений (рис . 3, б):

По условию задачи величины всех сопротивлений равны, а значит:

На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

Задача 4. В заданной цепи (рис . 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис . 4, б):

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает ») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.

Задача 5. В цепи (рис . 5) определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

Эквивалентное сопротивление всей цепи:

Ток в неразветвленной части схемы:

Напряжение на параллельных сопротивлениях:

Токи в параллельных ветвях:

Баланс мощностей:

Задача 6. В цепи (рис . 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис . 6, б).

Величина эквивалентного сопротивления:

Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис . 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

Тогда амперметр покажет ток:

Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис . 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

Преобразуем «треугольник » сопротивлений R1, R2, R3 в эквивалентную «звезду » R6, R7, R8 (рис . 7, б) и определим величины полученных сопротивлений:

Преобразуем параллельное соединение ветвей между узлами 4 и 5

Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

Тогда ток в ветви с сопротивлением R3 определится:

Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:

Источник