Меню

Расчет обмотки трансформаторов тока

Простой расчет трансформаторов тока и датчиков тока для схем защиты ИИП

Трансформаторы тока используются в схемах защиты силовых ключей от перегрузки по току в импульсных источниках питания (ИИП). Еще одним фактором применения трансформатора тока в ИИП является необходимость потенциальной развязки цепей схемы управления ИИП и цепей силовой части. Поэтому их расчет является актуальным при создании ИИП.

В данной статье мы рассмотрим детально простой расчет трансформаторов тока одно и двухтактных ИИП.

Расчет однотактного трансформатора тока.

Исходные данные.

Амплитуда тока силового ключа Iкл_max=3 А .

Напряжение срабатывания защиты схемы управления Uзащ=1 В .

Максимальная длительность импульса tимп.макс.=25 мксек .

Минимальная длительность импульса tимп.мин.=10 мксек .

Частота переключения fп=20 кГц .

Рисунок 1. Предлагаемое решение получения сигнала для схемы защиты верхнего силового ключа с помощью трансформатора тока в ШИМ регуляторе тока нагрузки.

Решение включает в себя трансформатор тока Т1, датчик тока — резистор R2, фильтр низких частот – резистор R1 и конденсатор C1.

Данное решение применимо для так же и для понижающего ИИП.

Расчет.

Для нормальной работы защиты схемы управления и исключения ложных срабатываний сигнал, подаваемый на вход защиты должен быть уменьшен на 25-30%. Таким образом рабочее напряжение на датчике тока R2 должно быть: Uдт=Uзащ-30%=0,7 В .

Для расчета трансформатора тока необходимо задаться коэффициентом трансформации. Рекомендации по выбору коэффициента трансформации основаны на уменьшении тока вторичной обмотки до десятков или сотен миллиампер. Оптимальным является диапазон 50÷100 mА. В нашем случае примем ток вторичной обмотки Iw2_max=100 mA. Тогда коэффициент трансформации Kтр= ( Iкл_max)/(Iw2_max)= 3/0,1=30 . Обычно у трансформаторов тока первичная обмотка делается одним витком. Тогда число витков вторичной обмотки w2= Kтр*w1=30*1=30 витков . Рассчитаем сопротивление датчика тока R2= ( Uдт)/(Iw2_max )= 0,7/0,1=7 Ом . Выберем в соответствии с рядом сопротивлений Е24, R2=7,5 Ом. Тогда рабочее напряжение датчика тока и рабочее напряжение на входе схемы защиты Uдт= Iw2_max*R2=0,1*7,5=0,75 В . Это значение соответствует условиям рекомендаций.

Расчет мощности выделяемой на резисторе R2 произведем по формуле PR2=( Iw2_rms) 2 *R2 .

В нашем случае для прямоугольной формы тока Iw2_rms=Iw2_max*√((tимп.макс.)/T) .

Где T= 1/fп = 1/20000=0,00005=50*10 -6 ,сек. — период частоты переключения.

Следовательно PR2= 0,0707 2 *7,5=0,0375 Вт . Мощность выделяемая на резисторе R2 имеет низкое значение.

Для выбора сердечника трансформатора тока руководствуемся следующими рекомендациями.

Для высокочастотных (десятки-сотни кГц) ИИП в качестве материала сердечника применяются в основном ферриты. Тип сердечника может быть любой, но предпочтение отдается кольцевым сердечникам. Кольцевой сердечник легко можно одеть на силовой провод или на вывод компонента ИИП. Например, в блоках питания персональных компьютеров часто встречается такое конструктивное решение. Трансформатор тока там установлен на выводе разделительного конденсатора.

Провод, напрямую пропущенный сквозь кольцо, представляет собой 1 виток.

Определяем требуемое сечение сердечника по формуле Sст= (Uдт*tимп.макс.)/(w2*dB) мм 2 .

Sст – сечение сердечника в квадратных миллиметрах.

Uдт – рабочее напряжение на датчике тока, вольт.

tимп.макс. – максимальная длительность импульса в микросекундах.

w2 — число витков вторичной обмотки, витков.

dB – перепад магнитной индукции за время импульса, Тесла.

Рекомендация по выбору dB.

Для однотактных применений dB не должно превышать значения 0,05 Тл. Иначе сердечник может войти в насыщение и форма импульса на датчике тока будет далека от реальной.

Выбираем сердечник из феррита марки 2000НМ1 типоразмер К16×10×4,5 с сечением сердечника Sст=13,5 мм 2 . Сечение выбранного сердечника должно быть обязательно больше расчетного.

Выбор сердечника обязательно должен учитывать способ крепления трансформатора тока. Например, если трансформатор тока крепится винтом, то внутренний диаметр сердечника должен позволить поместить обмотки, винт, изоляцию. При таком способе крепления винт можно использовать в качестве витка первичной обмотки.

Фильтр низких частот R1 – C2 предназначен для фильтрования высокочастотных помех, неизбежно появляющихся при переключении силового ключа.

Рекомендация по выбору: постоянная времени фильтра должна быть гораздо меньше минимальной длительности импульса τ=R1*C2≪ tимп.мин. . Делается это для того чтобы избежать искажения формы импульса. Примем τ=(1/20)*tимп.мин.= (1/20)*10*10 -6 =0,5 мксек .

Зададимся значением емкости конденсатора из ряда Е24, С2=470 pF . Тогда R1= τ/C2= (0,5*10 -6 )/(470*10 -12 )=1064 Ом . Выбираем значение резистора R1 из ряда Е24 1,1 кОм.

Еще одной из главных причин применения трансформаторов тока является выделение большой мощности на датчике тока при бес трансформаторной схеме. В сильноточных ИИП применение в качестве датчика тока просто резистора приводит к выделению мощности на нем в несколько ватт.

В качестве примера рассмотрим случай, когда ток ключа составляет 10 А и в качестве датчика тока применяется просто резистор. Остальные исходные данные такие же, как в нашем расчете приведенном выше. Тогда для обеспечения Uдт=0,7 В датчик тока должен иметь сопротивление

Тогда Iкл_rms=Iкл_max*√(tимп.мкса./T)=10*√(25*10 -6 )/(50*10 -6 )=7,07 А .

Мощность выделяемая на датчике тока составит PR_дт = (7,07 2 )*0,07=3,5 Вт.

Для надежной работы ИИП придётся установить резистор мощностью не менее 5 ватт. Применение в этом случае трансформатора тока приведет к сокращению мощности выделяемой на датчике тока в десятки раз.

Расчет окончен.

Моделирование работы однотактного трансформатора тока в программе Multisim.

Рисунок 2 . Модель ключа с трансформатором тока.

Как видно из скриншота, Пробник 1 (подключен к нагрузке) показывает амплитуду тока через нагрузку 3,01 А. Пробник 2 (подключен к датчику тока) показывает амплитудное значение тока через датчик тока 100 mА. Действующее значение тока 70,8 mА. Амплитуда напряжения на датчике тока 751 mВ. Частота 20 кГц. Ваттметр, подключенный к датчику тока, показывает мощность 37,4 милливатт. Все значения подтверждают расчет.

Рисунок 3. Осциллограммы напряжения на датчике тока и конденсаторе фильтра.

Как видно из осциллограмм амплитуда напряжения на датчике тока составляет 751 mВ и соответствует расчету. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.

ВАЖНО! При установке трансформатора тока в однотактных ИИП необходимо соблюдать фазировку обмоток! Иначе импульс напряжения на датчике тока будет иметь минусовую полярность, и схема защиты работать не будет.

Расчет двухтактного трансформатора тока.

Исходные данные.

Максимальный ток силовых ключей Iкл_max=2 А .

Напряжение срабатывания схемы защиты Uзащ=1 В .

Максимальная длительность импульса tимп.макс.=10 мксек .

Минимальная длительность импульса tимп.мин.=5 мксек .

Частота переключения fп=40 кГц .

Рисунок 4. Предлагаемое решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока в полу мостовом ИИП.

Решение включает в себя трансформатор тока Т1, датчик тока — резистор R1, выпрямитель VD3 – VD6, регулировочный резистор R3, фильтр низких частот – резистор R2 и конденсатор C4.

Расчет.

Поскольку в схеме применен регулировочный резистор R3, для обеспечения входного сигнала схемы защиты на уровне 0,75 В при 50% регулировке R3, напряжение подаваемое на R3 должно быть равным UR3=1,5 В .

Рабочее напряжение на датчике тока должно учитывать падение напряжения на двух диодах выпрямителя. Для быстродействующих импульсных диодов падение напряжения в открытом состоянии при малых токах составляет около 0,7 В.

Примем ток вторичной обмотки Iw2_max=100 mA. Тогда коэффициент трансформации Kтр= Iкл_max/Iw2_max = 2/0,1=20 . Тогда число витков вторичной обмотки w2= Kтр*w1=20*1=20 витков . Рассчитаем сопротивление датчика тока R1= Uдт/Iw2_max = 2,9/0,1=29 Ом . Выберем в соответствии с рядом сопротивлений Е24, R1=30 Ом.

Расчет мощности выделяемой на резисторе R1 произведем по формуле PR1= (Iw2_rms) 2 *R1 . В нашем случае для прямоугольной формы тока Iw2_rms=Iw2_max*√((2*tимп.макс.)/T) . Где T= 1/fп = 1/40000=0,000025=25*10 -6 ,сек. — период частоты переключения.

Тогда Iw2_rms=Iw2_max*√((2*tимп.макс.)/T)=0,1*√(2*10*10 -6 )/(25*10 -6 )=0,089 А . Следовательно PR1= 0,089 2 *30=0,24 Вт . Мощность выделяемая на резисторе R1 имеет низкое значение. Для нормальной работы необходимо выбрать резистор с мощностью рассеяния не менее 0,5 Вт.

Определяем требуемое сечение сердечника.

Рекомендация по выбору dB.

У феррита марки 2000НМ1 значение магнитной индукции насыщения составляет 0,34 Тл. Максимальное рабочее значение магнитной индукции составляет 0,31 Тл. Однако при таком значении индукции и высокой частоте переключения потери в сердечнике значительны. Производители ферритов нормируют значение потерь при максимальной индукции 0,2 Тл и частоте 16 кГц. При этом считается, что потери в сердечнике приемлемы и не вызывают сильного перегрева сердечника. Поскольку у нас частота переключения составляет 40 кГц, необходимо максимальное рабочее значение индукции снизить еще. Поэтому выбираем максимальное рабочее значение магнитной индукции

Вмакс=0,1 Тл. Тогда dB=2*Вмакс=2*0,1=0,2 Тл .

Выбираем сердечник из феррита марки 2000НМ1 типоразмер К10×6×4,5 с сечением сердечника Sст=9 мм 2 . Конструктивно трансформатор тока располагаем на печатной плате, причем один из выводов разделительного конденсатора проходит через окно сердечника и является витком первичной обмотки. Количество витков вторичной обмотки не велико и позволит разместить обмотку в один слой. Исходя из вышеизложенного типоразмер сердечника не изменяем.

Читайте также:  Поляризация проводника с током

Регулировочный резистор R3 позволит произвести настройку порога срабатывания. Номинал резистора R3 должен быть много больше номинала резистора датчика тока. Это необходимо для исключения влияния сопротивления резистора R3 на формирование падение напряжения на датчике тока R1. Поэтому выбираем номинал резистора R3 – 1 кОм, что много больше номинала R1.

Примем τ=(1/20)*tимп.мин.= ( 1/20)*5*10 -6 =0,25 мксек . Зададимся значением емкости конденсатора из ряда Е24, С4=240 pF . Тогда

R1= τ/C2= (0,25*10 -6 )/(240*10 -12 )=1041 Ом . Но! Поскольку мы ведем расчет на 50% движка резистора R3, значит, резистор R3 будет оказывать влияние на заряд конденсатора C2. При 50% установке движка соответственно это 500 Ом. Тогда значение сопротивления резистора

R1 = 1041 – 500 = 541 Ом. Выбираем значение резистора R1=510 Ом.

Фазировку обмоток при установке трансформатора тока в двухтактных ИИП соблюдать нет необходимости.

Моделирование работы двухтактного трансформатора тока в программе Multisim.

Рисунок 5 . Модель полумостового ИИП с трансформатором тока.

Как видно из скриншота, Пробник 1 (подключен к коллектору верхнего транзистора) показывает амплитуду тока через ключ 2,02 А. Ваттметр, подключенный к датчику тока, показывает мощность 236 милливатт. Эти значения соответствуют исходным данным и расчету.

Рисунок 6 . Осциллограммы напряжения на датчике тока.

Как видно из осциллограммы амплитуда напряжения на датчике тока составляет 3,049 В и соответствует расчету. Небольшое падение амплитуды напряжения на датчике тока к концу импульса обусловлено частичным зарядом разделительного конденсатора.

Рисунок 7 . Осциллограммы напряжения на регулировочном резисторе и конденсаторе фильтра.

Осциллограмма напряжения на регулировочном резисторе полностью повторяет форму тока обеих ключей. Амплитуда напряжения на регулировочном резисторе составляет 1,657 В. Это значение немного выше расчетного в 1,5 В. Амплитуда напряжения на конденсаторе фильтра составляет 788 mВ, что очень близко к расчету. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.

Существует еще одно схемное решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока в двухтактном ИИП. Оно связано с применением выпрямителя со средней точкой. Для этого вторичную обмотку трансформатора тока необходимо намотать со средней точкой. Этот прием сократит количество диодов до двух.

Рисунок 8. Предлагаемое решение получения сигнала для схемы защиты силовых ключей с помощью трансформатора тока со средней точкой в полу мостовом ИИП.

В этом случае меняется расчет датчика тока.

Резистор датчика тока R1 в схеме трансформатора тока со средней точкой подключен параллельно двум последовательно соединенным полу обмоткам. Тогда напряжение одной полу обмотки будет составлять половину падения напряжения на резисторе R1. После выпрямления получим амплитуду сигнала равную напряжению одной полу обмотки минус падение напряжения на диоде. Т.е. в половину меньше, чем требуется. Поскольку в схеме применен регулировочный резистор R3, для обеспечения входного сигнала схемы защиты на уровне 0,75 В при 50% регулировке R3, напряжение подаваемое на R3 должно быть равным UR3=1,5 В .

Таким образом для получения требуемого уровня сигнала для схемы защиты напряжение на датчике тока должно быть равно

При токе вторичной обмотки 0,1 А, действующее значение тока вторичной обмотки составит 0,089 А. А мощность рассеиваемая на резисторе R1 равна PR1=Iw2_rms*Uдт=0,089*4,4=0,392 Вт. Это достаточно много. Для уменьшения мощности рассеиваемой на резисторе R1, примем ток вторичной обмотки Iw2_max=50 mA. Тогда коэффициент трансформации Kтр= (Iкл_max)/(Iw2_max) = 2/0,05=40 .

Тогда число витков вторичной обмотки w2= Kтр*w1=40*1=40 витков . Число витков одной полу обмотки соответственно – 20 витков. Т.е. обмотка состоит из двух полу обмоток 20 + 20 витков. Рассчитаем сопротивление датчика тока R1= Uдт/Iw2_max = 4,4/0,05=88 Ом . Выберем в соответствии с рядом сопротивлений Е24, R1=91 Ом.

Действующее значение тока Iw2_rms=Iw2_max*√((2*tимп.макс.)/T)=0,05*√(2*10*10 -6 )/(25*10 -6 )=0,045 А Мощность выделяемой на резисторе R1

PR1= (Iw2_rms) 2 *R1=(0,045 2 )*91=0,184 Вт . Это вполне приемлемо.

Моделирование работы двухтактного трансформатора тока со средней точкой в программе Multisim .

Моделирование проведем по упрощенной схеме.

Рисунок 9. Модель с трансформатором тока со средней точкой.

Полумостовой ИИП заменен на биполярный источник тока с амплитудой 2 ампера.

Ваттметр, подключенный к датчику тока, показывает мощность 179 милливатт. Это значение очень близко к расчетному.

Рисунок 10 . Осциллограммы напряжения на датчике тока.

Как видно из осциллограммы амплитуда напряжения на датчике тока составляет 4,51 В и соответствует расчету.

Рисунок 11 . Осциллограммы напряжения на регулировочном резисторе и конденсаторе фильтра.

Амплитуда напряжения на регулировочном резисторе составляет 1,607 В. Это значение чуть выше расчетного в 1,5 В. Осциллограмма напряжения на конденсаторе фильтра показывает небольшие завалы фронта и спада импульса, обусловленные зарядом и разрядом емкости фильтра. При этом существенных изменений формы импульса не наблюдается, а амплитуда импульса остается неизменной. Амплитуда напряжения на конденсаторе фильтра при 50% повороте движка R3 составляет 0,803 В. Это чуть выше расчетного значения. Окончательное решение по значениям резистора и конденсатора фильтра принимается при настройке ИИП.

SERGR Опубликована: 16.02.2021 0 2
Вознаградить Я собрал 0 2

Источник

Онлайн расчет трансформатора тока

Данный онлайн калькулятор позволяет произвести расчет и выбор измерительных трансформаторов тока (ИТТ/ТТ) для подключения электрического счетчика по мощности.

ПРИМЕЧАНИЕ: После расчета выбранный трансформатор тока необходимо проверить по загрузке при максимальных и минимальных значениях проходящих через него нагрузок.

В соответствии с п.1.5.17. ПУЭ при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока должен составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5%.

Проверку выполнения данного требования можно произвести с помощью следующего онлайн калькулятора:

ПРИМЕЧАНИЕ: Максимальная загрузка должна составлять не менее 40%, а минимальная — не менее 5%, при этом загрузка в любом случае не должна составлять более 100%, данное значение будет означать перегрузку трансформатора тока.

В случае если рассчитанные значения максимальной и/или минимальной загрузок оказались меньше чем 40% и 5% соответственно необходимо выбрать трансформаторы тока с меньшим номиналом или, если это невозможно по условиям максимальной нагрузки, предусмотреть установку двух учетов электроэнергии: один — для максимальной нагрузки, второй — для минимальной.

Справочно: Расчет производится для счетчика с номинальным (базовым) током 5 Ампер.

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

  • Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
    • Подготовка исходных данных за 6 простых шагов
    • Выполнение онлайн расчета трансформатора
  • Как рассчитать силовой трансформатор по формулам за 5 этапов
    • Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
    • Особенности вычисления коэффициента трансформации и токов внутри обмоток
    • Как вычислить диаметры медного провода для каждой обмотки
    • Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
    • Учет свободного места внутри окна магнитопровода
  • 4 практических совета по наладке и сборке трансформатора: личный опыт

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Читайте также:  3 зертханалық жұмыс электр тiзбегiн құрастыру және оның әртүрлi бөлiктерiндегi ток күшiн өлшеу

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Сердечники трансформаторов

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

Коэффициент трансформации трансформатора

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Расчет диаметра провода

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

Расчет числа витков трансформатора

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Читайте также:  Tl431 регулируемый стабилизатор тока

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Источник



Расчет обмотки трансформаторов тока

КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА

Виктор Хрипченко пос. Октябрьский Белгородской обл.

Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет. Прочитал статью [1 ]; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Немного теории

Итак, прежде всего немного теории [4]. Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.

На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I 1 — ток первичной обмотки, I 2 -ток вторичной обмотки). Ток вторичной обмотки I 2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.

Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.

Алгебраическая сумма произведений I 1 x W 1 — I 2 x W 2 = 0 (пренебрегая малым током намагничивания), где W 1 — количество витков первичной обмотки трансформатора тока, W 2 — количество витков вторичной обмотки трансформатора тока.

Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков — рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I 1 x W 1 = I 2 x W 2 рассчитаем количество витков вторичной обмотки трансформатора.

W 2 = I 1 x W 1 / I 2

Далее произведя вычисления L 2 -индуктивности вторичной обмотки, ее сопротивление X L1 , мы вычислим U 2 и потом R c . Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I 2 , вы только тогда вычисляете количество витков. Ток вторичной обмотки трансформатора тока I 2 можно задать любой — отсюда будет вычисляться R c . И еще -I 2 должен быть больше тех нагрузок, которые вы будете подключать

Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).

Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.

На рис. 2 (точки — начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие — внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.

Если нагрузка не согласованная по току — это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге — выход его из строя.

Типы магнитных сердечников приведены на рис. 3 [3].

Витой или ленточный магнитопровод — одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.

Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах — 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).

На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях [4] (в зависимости от применяемой марки электротехнической стали — 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S — площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7. 0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.

Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С.

Для определения магнитных свойств таких магнитопроводов надо намотать 20. 30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S — площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll — магнитную проницаемость сердечника [5]:

(1) µ = (800 x L x lm) / (N 2 x S) — для ленточного и Ш-образного сердечника.

(2) µ = 2500*L(D + d) / W 2 x C(D — d) — для кольцевого (тороидильного) сердечника.

При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.

Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.

Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт — магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике.

А теперь приступим к расчету трансформатора тока, применяя законы [6].

Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.

Пусть будет I 1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.

Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4.

Размеры: D = 40 мм, d = 25 мм, С = 10 мм.

Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись ССЫЛКОЙ.

Источник