Меню

Проволока с флюсом сварка ток

Сварка под флюсом: присадочные материалы и флюсы

Правильный выбор марки сварочной (электродной) проволоки и флюса — один из главных элементов разработки технологии сварки под флюсом.

Электродная проволока: марки, обозначение, поставка

Стальная сварочная проволока, изготавливаемая по ГОСТ 2246-70, который предусматривает 77 марок проволоки.

В условные обозначения марок проволоки входит индекс Св (сварочная) и следующие за ним цифры и буквы. Цифры после индекса Св указывают среднее содержание углерода в сотых долях процента.

Так же, как и в марках стали, легирующие элементы в марках проволоки обозначаются буквами:

  • А — азот;
  • Ю — алюминий;
  • Р — бор;
  • Ф — ванадий;
  • В — вольфрам;
  • К — кобальт;
  • С — кремний;
  • Г — марганец;
  • Д — медь;
  • М — молибден;
  • Н -никель;
  • Б — ниобий;
  • Е — селен;
  • Т — титан;
  • Х — хром.

Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. Если содержание легирующего элемента менее 1%, то ставится только соответствующая буква.

Буква А в конце условных обозначений марок низкоуглеродистой и легированной проволок указывает на повышенную чистоту металла по содержанию серы и фосфора. В проволоке марки СВ-08АА содержится не более 0,020% серы и не более 0,020% фосфора.

В условном обозначении сварочной проволоки перед индексом Св указывается цифра, обозначающая диаметр проволоки в мм, а после условного обозначения — номер ГОСТа.

Например: сварочная проволока диаметром 3 мм марки Св-08А, предназначенная для сварки (наплавки), с неомедненной поверхностью условно обозначается таким образом: проволока 3 Св-08А ГОСТ 2246-70.

Если проволока поставляется с омедненной поверхностью, то после марки проволоки ставится буква О.

Буква Э обозначает, что проволока предназначена для изготовления электродов.

Буквы Ш, ВД или ВИ обозначают, что проволока изготовлена из стали, выплавленной электрошлаковым или вакуумнодуговым переплавом, или переплавом в вакуумно-индукционных печах.

Сварочные проволоки делятся на:

  • низкоуглеродистые (с суммарным содержанием легирующих элементов до 2%);
  • легированные (суммарное содержание легирующих элементов от 2 до 6%) и высоколегированные (суммарное содержание элементов более 6%).

Проволока поставляется в бухтах массой до 80 кг. На каждой бухте крепят металлическую бирку с указанием завода-изготовителя, условного обозначения проволоки, номера партии и клейма технического контроля. По соглашению сторон проволоку могут поставлять намотанной на катушки или кассеты.

Транспортировать и хранить проволоку следует в условиях, исключающих ее ржавление, загрязнение и механическое повреждение. Если же поверхность проволоки загрязнена или покрыта ржавчиной, то перед употреблением ее необходимо очистить. Проволоку очищают при намотке ее на кассеты в специальных станках, используя наждачные круги. Для удаления масел используют керосин, уайт-спирит, бензин и др. Для устранения влаги применяют термическую обработку: прокалку при температуре 100 — 150°С. Рекомендуется также обрабатывать проволоку в 20%-ном растворе серной кислоты с последующей прокалкой при температуре 250°С 2-2,5 ч. Необходимость в обработке электродной проволоки перед сваркой отпадает, если использовать омедненную проволоку.

В соответствии с требованиями EN 756 обозначение сварочных проволок строится по схеме:

Ni0,5 ? Ni = 0,4. 0,8;

Сварочные флюсы: функции, классификация, общие требования

Сварочный флюс — один из важнейших элементов, определяющих качество металла шва и условия протекания процесса сварки. От состава флюса зависят составы жидкого шлака и газовой атмосферы. Взаимодействие шлака с металлом обусловливает определенный химический состав металла шва. От состава металла шва зависят его структура, стойкость против образования трещин. Состав газовой атмосферы обусловливает устойчивость горения дуги, стойкость против появления пор и количество выделяемых при сварке вредных газов.

Функции сварочных флюсов

Флюсы выполняют следующие функции:

  • физическую изоляцию сварочной ванны от атмосферы;
  • стабилизацию дугового разряда;
  • химическое взаимодействие с жидким металлом;
  • легирование металла шва;
  • формирование поверхности шва.

Лучшая изолирующая способность — у флюсов с плотным строением частиц мелкой грануляции. Однако при плотной укладке частиц флюса ухудшается формирование поверхности шва. Достаточно эффективная защита сварочной ванны от атмосферного воздействия обеспечивается при определенной толщине слоя флюса.

Необходимая высота слоя флюса для сварки низкоуглеродистых и низколегированных сталей на различных режимах следующая:

Сварочный ток, А 200 — 400 600 — 800 1000 — 1200
Высота слоя флюса, мм 25 — 35 35 — 40 45 — 60

В состав флюса вводят элементы-стабилизаторы, повышающие стабильность горения дуги. Введение этих элементов позволяет применять переменный ток для сварки, более широко варьировать режимы сварки.

Химический состав металла шва формируется за счет основного и электродного металлов. Состав флюса также может приводить к изменениям химического состава металла шва. Однако эти изменения возможны, как правило, только в пределах долей процента. Для легирования металла шва применяют керамические флюсы.

Формирующая способность флюсов определяется вязкостью шлака, характером ее зависимости от температуры, межфазным натяжением на границе металл- шлак и т. п. Формирующая способность в значительной степени зависит от мощности дуги. При сварке мощной дугой (ток свыше 1000 А) хорошее формирование обеспечивают «длинные» флюсы, вязкость которых при повышении температуры монотонно уменьшается. При сварке кольцевых швов малого диаметра для предотвращения отекания шлака следует использовать «короткие» флюсы, вязкость которых резко уменьшается с повышением температуры.

Существенное влияние на формирование шва оказывает газопроницаемость флюса, которая определяется размерами частиц и насыпной массой флюса. Рекомендуемые размеры частиц стекловидного флюса в зависимости от мощности дуги, обеспечивающие удовлетворительное формирование шва, приведены ниже.

Сварочный ток, А 200 — 600 600 — 1200
Грануляция частиц, мм 0,25 – 1,6 0,4 – 2,5

Классификация флюсов

Флюсы можно классифицировать по:

  • способу изготовления;
  • химическому составу;
  • строению и размеру частиц;
  • назначению.

По способу изготовления флюсы подразделяются на:

  • плавленые;
  • керамические;
  • механические смеси.

Плавленые флюсы получают путем сплавления компонентов шихты в электрических или пламенных печах.

Керамические флюсы производят из смесей порошкообразных материалов, скрепляемых с помощью клеящих веществ, главным образом жидкого стекла. Спеченные флюсы изготовляют путем спекания компонентов шихты при повышенных температурах без их сплавления. Полученные комки затем измельчают до требуемого размера.

Флюсы-смеси изготовляют механическим смешением крупинок различных материалов или флюсов. Большим недостатком механических смесей является склонность к разделению на составляющие при транспортировке и в процессе сварки вследствие разницы в плотности, форме и размере крупинок. Поэтому механические смеси не имеют постоянных составов и сварочных свойств и недостаточно надежно обеспечивают получение стабильного качества сварных швов.

В зависимости от химического состава флюсы классифицируют по содержанию:

  • кремния;
  • марганца.

Низкокремнистые флюсы содержат менее 35% оксида кремния (SiO2). При содержании более 1% оксида марганца (МnО) флюс называют марганцевым. Высококремнистые флюсы содержат более 35% SiО2; в составе безмарганцевых флюсов менее 1% MnO. Особую группу при классификации флюсов по химическому составу занимают бескислородные флюсы.

По степени легирования различают флюсы:

  • пассивные (практически не легирующие металл шва);
  • слаболегирующие (плавленые);
  • и легирующие (керамические).

По строению частиц плавленые флюсы разделяют на:

  • стекловидные (прозрачные зерна)
  • пемзовидные (зерна пенистого материала белого или светлых оттенков желтого, зеленого, коричневого и других цветов).

Пемзовидные флюсы имеют меньшую насыпную массу (0,7-1,0 кг/дм 3 ), чем стекловидные (1,1-1,8 кг/дм 3 ). Наибольшее применение нашли плавленые флюсы.

В зависимости от назначения и преимущественного применения различают флюсы для электродуговой и для электрошлаковой сварки, а также для механизированной сварки и наплавки углеродистых сталей, легированных сталей, цветных металлов и сплавов. Такое разделение в известной степени условно, поскольку флюсы, преимущественно применяющиеся для сварки и наплавки металлов или сплавов одной группы, могут быть с успехом использованы для сварки и наплавки металлов другой группы. Вместе с тем флюсы, предна­значенные для сварки одних цветных металлов или одних марок легированных сталей, могут оказаться непригодными для сварки других цветных металлов или других марок легированных сталей.

Читайте также:  Esp32 максимальный ток выхода

Общие требования к флюсу

Флюсы для механизированной сварки должны обеспечивать устойчивое протекание процесса сварки, отсутствие кристаллизационных трещин и пор в металле шва, требуемые механические свойства металла шва и сварного соединения в целом, хорошее формирование шва, легкую отделимость шлаковой корки, минимальное выделение токсичных газов при сварке, а также иметь низкую стоимость и возможность массового промышленного изготовления.

В соответствии с EN 760 сварочные флюсы классифицируют по химическому составу как показано в таблице ниже.

Классификация (типы) флюсов по химическому составу

Al2O3 > 20%; CaF2 (общее содержание фтора) 20%

SiO 2 20%; CaF2 (общее содержание фтора) > 15%

Сочетания флюс-проволока при сварке под флюсом

Если сварочно-технологические характеристики процесса сварки под флюсом определяются в основном свойствами флюса, то механические свойства металла швов и сварных соединений зависят от сочетаний «флюс-проволока».

Получение качественных швов на углеродистых и некоторых низколегированных конструкционных сталях обеспечивается путем использования следующих сочетаний флюсов и сварочных проволок: плавленый высококремнистый марганцевый флюс и низкоуглеродистая или марганцовистая сварочная проволока, плавленый высококремнистый безмарганцевый флюс и марганцовистая сварочная проволока, керамический флюс и низкоуглеродистая или марганцовистая проволока.

При использовании плавленого высококремнистого марганцевого флюса и низкоуглеродистой или марганцовистой сварочной проволоки либо плавленого высококремнистого безмарганцевого флюса и марганцовистой сварочной проволоки последняя должна быть из кипящей или полуспокойной стали. Успокоение металла сварочной ванны и предупреждение пористости при сварке кипящей стали осуществляется в результате введения некоторого количества кремния из флюса в зону сварки. Легирование металла шва марганцем с целью повышения его стойкости против образования кристаллизационных трещин производится через флюс (первое и третье сочетания) или через проволоку (второе и третье сочетания).

Сварочные свойства высококремнистых марганцевых флюсов несколько лучше, чем свойства высококремнистых безмарганцевых. Положительной характеристикой высококремнистых марганцевых флюсов является высокая стойкость сварных швов против образования кристаллизационных трещин. Это обусловливается малым переходом серы из флюсов данного типа в металл шва и сравнительно сильным выгоранием углерода из металла сварочной ванны. Кроме того, на качество шва положительно влияет более низкое по сравнению с мар­ганцовистой проволокой содержание углерода в низкоуглеродистой проволоке, используемой в сочетании с высококремнистыми марганцевыми флюсами. При сварке под ними пористость сварных швов меньше, чем при сварке под высококремнистыми безмарганцевыми флюсами.

Если прочность и химический состав металла шва определяются химическими составами сварочной проволоки и основного металла, то его ударная вязкость в значительной степени зависит от флюса. Высокая ударная вязкость металла шва обеспечивается при его мелкокристаллической структуре, низком содержании неизбежных вредных примесей и неметаллических включений. Для выполнения этих требований во флюсе обычно снижают содержание SiO2. Поэтому при сварке низколегированных сталей преимущественно применяются низкокремнистые флюсы. Дополнительным требованием является возможно более низкое содержание водорода в металле шва. Измельчению структуры металла шва способствует также уменьшение погонной энергии сварки. Однако при этом уменьшается эффективность процесса сварки вследствие увеличения количества проходов.

В процессе сварки современных низколегированных сталей повышенной прочности допускается лишь ограниченный подвод тепла для исключения повреждения структуры основного металла в околошовной зоне. Это требование обеспечивается путем наложения многослойных швов при сварке металла средней и большой толщины. В связи с этим флюсы, предназначенные для сварки таких сталей, должны обеспечивать легкую отделимость шлаковой корки, высокие качество формирования шва и его механические свойства. В результате повышения механических свойств металла шва путем применения соответствующего сочетания флюса и проволоки исключается необходимость наложения неэкономичных тонких швов при многопроходной сварке толстого металла.

Реакции шлак-металл и газ-металл, восстановление и выгорание элементов

Во время сварки плавлением происходит взаимодействие между жидкими шлаком и металлом. Длительность этого взаимодействия обычно очень невелика. При электродуговой сварке она колеблется от 10 с до 1 мин. Взаимодействие прекращается после затвердевания металла и шлака. Несмотря на кратковременность, реакции взаимодействия между шлаком и металлом при электродуговой сварке могут проходить очень энергично, что обусловливается высокой температурой нагревания металла и шлака, большими поверхностями их контактирования и сравнительно большим относительным количеством шлака.

Взаимодействие между шлаком и металлом описывается реакциями вытеснения из шлака в металл одного элемента другим или распределения между шлаком и металлом. Реакции вытеснения преимущественно ведут к обогащению или обеднению металла шва легирующими элементами, реакции распределения — к образованию в металле шва неметаллических включений.

В процессе реакций вытеснения на поверхностях контактирования жидких металла и шлака взаимодействуют атомы металла и молекулы окислов шлака. Весьма существенную роль при этом играют реакции восстановления кремния и марганца:

(МnО) + [Fe] = (FeO) + [Mn]; (SiO2) + 2 [Fe] = 2 (FeO) + [Si].

Символы в круглых скобках обозначают элементы и соединения, находящиеся в шлаке, в квадратных — в металле. При высоких температурах реакции преимущественно идут слева направо (восстановление марганца и кремния из шлака в металл), при снижении температуры — справа налево (окисление марганца и кремния и переход их из металла в шлак). Направление реакций зависит также от концентрации реагирующих веществ. Если в металле сварочной ванны содержится мало марганца и кремния, а в шлаке много МпО и SiO2 и мало FeO, марганец и кремний при высоких температурах (вблизи дуги) восстанавливаются из шлака в металл. Если в металле сварочной ванны много марганца и кремния, а в шлаке нет МпО и SiO2, или много FeO, марганец и кремний окисляются даже в зоне высоких температур сварочной ванны.

Реакции взаимодействия между шлаком и металлом сварочной ванны проходят в условиях быстрого изменения температуры и постоянного обновления состава реагирующих фаз. В связи с этим изменяются как интенсивность прохождения этих реакций, так и их направление. Однако, хотя взаимодействие шлака и металла при сварке не достигает состояния равновесия, оно всегда направлено в сторону его установления.

Интенсивность взаимодействия шлака и металла зависит от режима сварки, причем, наиболее сильно на нее влияют сила тока и напряжение дуги; плотность тока и скорость сварки оказывают малое влияние. Уменьшение силы тока и увеличение напряжения дуги усиливают взаимодействие шлака и металла, увеличивают интенсивность восстановления или окисления кремния и марганца при сварке, усиливают переход серы и фосфора из шлака в металл или из металла в шлак. При автоматической сварке под флюсом заданный режим поддерживается постоянным, в единицу времени плавятся определенные количества электродного и основного металлов, одинаково проходят процессы взаимодействия металлической, шлаковой и газовой фаз при высоких температурах. Благодаря постоянству режима автоматической сварки получается шов стабильного химического состава. Если известны химический состав основного металла и сварочной или присадочной проволоки, а также характер изменения химического состава металла сварочной ванны в результате взаимодействия со шлаковой или газовой фазой, то можно заранее приблизительно рассчитать химический состав шва, который получится при сварке на выбранном режиме.

Читайте также:  Ввг 6мм2 допустимый ток

Обращение с флюсами для сварки и их хранение

Во избежание появления пор в швах влажность сварочных флюсов не должна превышать установленных норм. Влажность флюса АН-60 не должна превышать 0,05%; для остальных марок плавленных флюсов, выпускаемых по ГОСТ 9087-81 не более 0,10%.

Флюсы повышенной влажности просушивают в печах при 100-110°С (стекловидные флюсы) и 290-310°С (пемзовидные флюсы). Фторидные флюсы прокаливают при 500-900°С.

При повторном использовании флюсов размеры их частиц уменьшаются. Поэтому следует периодически просеивать флюс через сито и произоводить сварку под флюсом на меньших сварочных токах.

Источник

Флюсовая проволока для полуавтомата — мобильность и качество соединений

флюсовая проволока для полуавтомата

Очень часто полуавтоматическую сварку приходится вести в местах с затрудненным доступом. В них сложно или вовсе невозможно использовать баллон с газом. Выходом, позволяющим сохранить преимущества сварочного полуавтомата, но при этом отказаться от громоздкого баллона, является использование флюсовой проволоки для полуавтомата.

Классификация и маркировка

Вся современная флюсовая проволока, как отечественного, так и импортного производства подразделяется на типы по семи признакам:

  1. Назначение получаемого соединения.
  2. Прочностные характеристики шва (сопротивление разрыву и ударная вязкость).
  3. Состав внутреннего сердечника.
  4. Тип образуемого в процессе сварки защитного покрытия.
  5. Положение в пространстве свариваемых деталей по отношению к электроду (здесь возможны варианты — только вертикально, только горизонтально, только в нижней горизонтальной плоскости, только в нижней вертикальной плоскости, в любом положении).
  6. Соединяемые металлы — это может быть сталь (легированная или нет), цветные металлы, сплавы.
  7. Способность к образованию внешней газовой защиты или нет (в последнем случае нужен баллон с углекислым газом).

В России, по ряду источников, наиболее популярны и распространены марки:

  • ER70S-6;
  • E71T-1;
  • E71T-GS;
  • T-8;
  • T-GS;
  • BlueWeld 802208;
  • Forte.

Если нужно соединить металлические делали не толще 2 мм, то рекомендуется использовать проволоку 0.8 мм. В случае, когда толщина детали больше, но не превышает 5 мм — используют в 2 мм диаметром. При действительно массивных соединяемых деталях нужно использовать диаметром около 6-8 мм и более.

В зависимости от материала соединяемых сваркой деталей можно выделить три типа проволоки:

  1. Для сварки алюминиевых деталей. При работе с этим материалом без флюса обойтись невозможно.
  2. Для сварки медных деталей. Чаще всего встречается 0,8 мм диаметром.
  3. Для стальных изделий. Предполагает предварительную подготовку места соединения.

Основные характеристики

Флюсовая проволока в норме (соответствие ГОСТу) обладает отличным качеством и легкостью сварки других металлов. В шве, образованном ею, содержится минимум примесей, ухудшающих механические и химические его свойства. Шов обычно крепок, минимально ошлакован и стоек к коррозии.

Сам процесс сваривания толстых деталей (более 5 мм) усложняется необходимостью подбора правильного электрода, режима работы аппарата.

Как следует из названия, флюсовая проволока уже содержит флюс, соответственно при работе ею нет нужды рассчитывать точные количества добавок. К тому же готовая смесь менее токсична и более однородна, чем составленная самим сварщиком.

проволока флюсовая для полуавтомата без газа

По своему устройству флюсовая проволока состоит из двух частей:

  • Внешняя оболочка — она представляет собой завитую спиралью ленту из нелегированной стали толщиной от 0.2 до 0.8 мм. Оболочка защищает сердечник.
  • Сердечник — состоит из спрессованного порошка сложного состава. В него наиболее часто входят вещества раскисляющие расплав металла, стабилизирующие электрическую дугу, легирующие получающийся шов.

Сварка флюсовой проволокой без газа

Прежде чем начать процесс сварки нужно настроить на аппарате рекомендуемые показатели тока. Далее нужно проверить состояние подающего рукава (на предмет изношенности) и отсутствие смещения податчика. Нужно откалибровать и подающие ролики — они не должны слишком сильно жать во избежание деформации и неравномерной подачи.

Соединяемые детали нужно очистить от оксидной пленки и при толщине больше 4-5 мм — сформировать скосы. После возникновения электрической дуги ее ведут снизу вверх детали (если она расположена вертикально). Ручку горелки нужно держать под углом к свариваемым поверхностям — это стабилизирует сварочную ванну, предохраняет от преждевременного растекания металла из нее.

Скорость выведения шва рекомендуется держать около 15-20 мм в секунду. При формовке шва в несколько проходов нужно дождаться остывания слоя и очистить его поверхность от шлаковой корки — иначе второй и последующие швы получатся низкокачественными из-за посторонних примесей.

Особенности сварки

У начинающих сварщиков часто происходит так, что даже при медленной подаче полуавтоматом не формируется сварной шов. Детали, вместо соединения просто прожигаются электрической дугой.

Для того, чтобы этого не происходило, нужно выдерживать расстояние около 40-45 мм от начала ванны. Кроме этого нужно перед работой поменять полярность вашего сварочного полуавтомата. Она должна быть прямой.

  • Прямая полярность означает, что «-» подключается к горелке, а «+» к свариваемой детали.
  • Материал турецкого производства имеет много негативных отзывов. Наиболее качественный шов дает проволока итальянского производства. Но у нее есть существенный недостаток — высокая цена. Наиболее приемлемым соотношением цена-качество обладает производимая в нашей стране и в Китае

Из-за отсутствия выделения при сварке газа не происходит охлаждения шва — это увеличивает риск прогара. Поэтому рабочее напряжение нужно подобрать минимальным (соотнося с типом материала свариваемых деталей). Скорость же подачи должна быть на грани максимальной. Чисто практически это можно охарактеризовать как начало дискомфорта для держащей горелку руки.

Важно! Кромку соединяемых деталей, если их толщина превышает 5 мм, нужно слегка сточить. Это облегчит формирование сварочной ванны. Если металл заготовок нестоек к окислению, то его нужно защитить от образования оксидного налета

Главным залогом создания качественных сварных швов является правильно подобранная скорость подачи сварочным полуавтоматом.

Источник

Техника сварки флюсовой проволокой

Техника сварки флюсовой проволокой полуавтоматом без газа

Техника сварки флюсовой проволокой полуавтоматом без газа

Сварка флюсовой проволокой с помощью полуавтомата без газа имеет ряд своих преимуществ. Во-первых, это мобильность, поскольку нет необходимости перевозить баллоны, шланги, редукторы и т. д. В общем, кучу газобаллонного оборудования.

Во-вторых, это возможность варить в труднодоступных местах, куда нет возможности подвести газ. Также существует и еще один плюс, который связан с простотой сварки флюсовой проволокой, ведь газ зачастую часто сдувает ветром, что приводит к возникновению различных проблем.

Однако и недостатки также имеются. Например, высокая стоимость флюсовой проволоки порой ставит под вопрос целесообразность её использования. Кроме того, чтобы нормально варить проволокой, необходимо знать, как это правильно делается.

Техника сварки флюсовой проволокой

Чтобы процесс сварки проволокой прошёл хорошо, необходимо правильно настроить сварочное оборудование. В первую очередь нужно подобрать требуемые значения сварочного тока, который зависит от толщины свариваемого металла. Как правило, все современные полуавтоматы имеют соответствующие таблицы на корпусе. Поэтому с подбором тока сварки проблем возникнуть не должно.

Техника сварки флюсовой проволокой

Варить флюсовой проволокой нужно током обратной полярности. При этом важно подобрать оптимальную скорость подачи проволоки. Чтобы осуществить регулировку следует задействовать шестерни, которые поставляются в комплекте. Очень важно уделить должное внимание и прижимному моменту. Проволока не должна слишком свободно проскальзывать, но и повреждать её прижимным устройством, также не должно.

Техника сварки флюсовой проволокой

Начинать варить флюсовой проволокой рекомендуется с пробного образца, чтобы не испортить нормальную заготовку. Попробуйте сварить кусок небольшого металла и поэкспериментировать с режимами сварки. При правильных настройках полуавтомата количество флюса выделяется согласно существующим нормам, а сварочная дуга горит ровно и стабильно.

Читайте также:  Ток көзінің эқк мен ішкі кедергісі кернеу және потенциалдар айырмасы

Когда можно обойтись полуавтоматом без газа

В процессе сварки полуавтоматом с использованием проволоки, кончик ведётся плавно и с определённой скоростью. Нельзя слишком быстро или наоборот, слишком медленно вести горелку полуавтомата, поскольку это приведёт к возникновению различного рода дефектов сварного шва.

Когда можно обойтись полуавтоматом без газа

Итак, варить флюсовой проволокой можно, однако в тех случаях, когда это будет целесообразно. Во всех же остальных случаях, сварка в среде защитных газов оказывается более эффективным, да и к тому же, наиболее экономным решением.

Техника сварки флюсовой проволокой без газа полуавтоматом

Однако если на месте, где проводятся сварочные работы, нет газа или доставить баллоны проблематично, то сварка флюсовой проволокой может помочь выйти из затруднительного положения. В любом случае нужно взвесить все «за и против» подобного рода решения, и только после этого основывать выбор на его эффективности.

Источник



Преимущества флюсовой проволоки для сварки полуавтоматом

При выполнении сварки полуавтоматом без газа широко применяется флюсовая проволока.

Флюсовая проволока сварочная

Флюсовая проволока сварочная

Это позволяет увеличить производительность работы, уменьшить время, необходимое для формирования шва и в результате сварки получить надежное и качественное соединение.

1 Особенности флюсовой сварки полуавтоматом без газа

При варке изделий из нержавейки флюсовой проволокой, соединение производится без разбрызгивания капель металла, а корка, полученная в процессе работы полуавтомата, надежно защищает как дугу, так и металл от вредоносного воздействия атмосферы.

Для того, чтобы варить изделия из нержавейки полуавтоматом без использования газа, пользуются флюсовой проволокой следующих диаметров:

  • 2 мм;
  • 5 мм;
  • 8 мм.

Варить детали из нержавейки можно без преждевременного смазывания кромок соединяемых изделий.

Сварка без газа проволокой с флюсом позволяет получить соединение, отличающееся высокой плотностью и однородностью.

Кроме того производительность наплавки полуавтоматом увеличивается в 2-4 раза и не возникает необходимости в тяжелой и трудоемкой процедуре удаления металлических брызг. Процесс сварки полуавтоматом без использования газа имеет ряд особенностей.

Флюсовая проволока подается в автоматическом режиме по мере того, как происходит ее сгорание. Механизм подачи соединяется со специальной катушкой.

Сварочный процесс протекает следующим образом: полуавтомат создает дугу, под воздействием которой флюсовая проволока и металлическая деталь начинают плавиться.

svarka-poluavtomatom

В результате формируется сварочная ванна, вся поверхность которой покрывается защитным слоем шлака. После того, как дуга удаляется от кромок, металл подвергается кристаллизации и формируется соединение, покрытое шлаковой коркой, которую без труда можно удалить.

При соединении деталей полуавтоматом без использования газа варьируя силу тока и пользуясь проволокой различных диаметров можно регулировать параметр глубины проплавления.

Если варить шов со скоростью более 40 м/ч, то его высота значительно увеличится. При этом глубина и ширина провара уменьшаться.

Производительность процесса можно значительно увеличить, если применять расходный материал с небольшим диаметром (2-5 мм) и подавать ток в 65-149 А/мм2.
к меню ↑

2 Классификация и маркировка проволоки

На сегодняшний день выделяют несколько разновидностей флюса, которые применяются для сварки полуавтоматом без использования газа. Классифицируются представленные изделия по таким особенностям, как:

  • Тип сердечника;
  • Возможность выполнения работ в различных положениях электрода;
  • Назначение;
  • Механические характеристики;
  • Вариант применяемого защитного покрытия.

При выборе изделия особенно важно обращать внимание на такие показатели металла, как ударная вязкость и сопротивление разрыву.

Маркировка изделий основывается на пространственном положении, в котором проходит сварочный процесс:

  • «Т» – работа может проводиться в любом положении;
  • «Ву» – для создания вертикальных швов;
  • «Вх» – для создания горизонтальных швов;
  • «В» – при работе нижнем горизонтальном положении;
  • «Н»- для соединения в нижней вертикальной плоскости.

Флюсовая проволока может использоваться для соединения стали следующих видов:

  • низкоуглеродистой и низколегированной;
  • высоколегированной и легированной;
  • для цветных металлов и их сплавов.

Svarochnii-shov-flyusovoi-provolokoi

Сварочный шов флюсовой проволокой

Любая разновидность представленного расходного материала должна обеспечивать устойчивость процесса соединения деталей и предотвращать возникновение трещин и пор в шве.

Шов при этом должен создаваться с нужным химическим составом, а корка из шлаков – легко отделяться.

Немаловажное значение имеет минимальное количество элементов, при нагревании выделяющих токсичные газы.
к меню ↑

2.1 Основные характеристики сварочной проволоки

Представленные электроды хорошо проплавляют металл и наиболее подходят для создания нахлесточного, стыкового или углового соединения за один подход.

Изделие отличается высокой степенью сопротивляемости к появлению шлаковых образований и пористости на металле.

Проволока обеспечивает стабильный перенос струи и позволяет производить соединение из любого положения. Электрод состоит из специального наполнителя (сердечника) и оболочки.

Оболочка представляет собой холоднокатную ленту, изготовленную с применением неполированной стали с небольшим содержанием углерода. Ширина и толщина защитной ленты колеблется в пределах от 0,2 до 0,8 мм.

Flyusovaya-provoloka-v-razreze

Флюсовая проволока в разрезе

В состав сердечника электрода входят ферросплавы, руды, минералы и металлы. Они способствуют формированию шва с необходимыми эксплуатационными характеристиками.

Читайте также: какую арматуру для радиаторов нужно использовать при прокладке сетей отопления?

Элементы, входящие в сердечник, могут быть:

  • раскисляющими – порошки и ферросплавы;
  • стабилизирующими – обеспечивающими устойчивую электродугу;
  • легирующими – для придания нужных соединительных характеристик;
  • специальными – оказывающими дополнительное влияние на процесс сварки.

Основные достоинства таких электродов заключаются в том, что соединение деталей можно производить в любых положениях и под любым углом, а химический состав полученного шва будет иметь заранее заданные характеристики плотности, прочности и долговечности.

Кроме того изделие надежно защищено от механической нагрузки подающих роликов катушки полуавтомата, а варить деталь можно визуально контролирую открытую сварочную дугу.

Еще одно преимущество – это компактность оборудования, применяемого для соединения, нет нужды в громоздких газовых баллонах и приспособлениях, обеспечивающих подачу газа.

Существенный недостаток выражается в том, что открытая дуга имеет достаточно сильное излучение, потому работы рекомендуется проводить в специальной защитной маске.
к меню ↑

2.2 Сварка флюсовой проволокой без газа (видео)


к меню ↑

2.3 Как выполнять сварку полуавтоматом без применения газа?

Перед началом работ подбирается нужная сила тока и скорость, с которой будет подаваться гибкий электрод.

Для этого шестерни, входящие в комплект аппарата могут быть заменены. Если эти параметры настроены правильно, то агрегат генерирует устойчивую и мощную дугу.

Process-svarki

Перед тем как начать варить, следует учесть, что тепло от вертикального соединения всегда будет подниматься снизу вверх. Потому вести соединение опытные специалисты рекомендуют в направлении сверху вниз. Особенно актуально это при варке тонких металлических листов.

Читайте также: сколько весит арматура в зависимости от класса?

Рабочая горелка должна держаться с небольшим наклоном вверх. Это позволит так называемой сварочной ванне удерживаться и не растекаться по сторонам. Передвижение горелки нужно проводить с достаточно высокой скоростью, для того, чтобы сверху соединения не оставались капли расплавленного металла.

Важно помнить о том, чтобы гибкий электрод всегда находился на переднем крае сварочной ванны. Следуя этим несложным рекомендациям, можно формировать шов со средней скоростью 2 см/сек.

Быстрота процесса достигается благодаря автоматической подаче проволоки. В ходе работ накопившиеся шлаки могут попадать в ванну, это приводит к тому, что сверху одного шва возникает еще один.

Чтобы избежать таких последствий рекомендуется предварительно производить очистку предыдущего соединения.

Детали для стыковки могут обладать при этом достаточно малой толщиной – до 0,5 мм. Полученный шов будет практически невосприимчив к ржавчине, коррозии и всевозможным загрязнениям.

Источник