Меню

Проводник с переменным током излучающий электромагнитные волны 6 букв

Электромагнитные волны

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого элеетрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Закон электромагнитной индукции в трактовке Максвелла

Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).

Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε и μ – электрическая и магнитная постоянные:

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Подставляя сюда выражения для wэ, wм и υ, можно получить:

Поток энергии в электромагнитной волне можно задавать с помощью вектора, направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ. Этот вектор называют вектором Пойнтинга.

В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

где E – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м 2 ).

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены Петром Николаевичем Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности (СТО), оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Генриха Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.

Читайте также:  Аппарат который пропускает ток

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А.С. Попов, 1895 г.).

7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).

Элементарный диполь, совершающий гармонические колебания

Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Излучение элементарного диполя

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Источник

Урок №3. Электричество и магнетизм. Электромагнитные волны.

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Как вы сами уже догадываетесь, цель данного урока: освоить теоретические сведения касающиеся, электричества, магнетизма и проследить связь между этими двумя понятиями. Потому что именно благодаря магнитным (электромагнитным) явлениям, мы можем получить электричество, без которого сейчас не мыслима жизнедеятельность человека. В конце урока вас ждет не сложная, но довольно интересная практическая работа.

Непосредственную связь между электричеством и магнетизмом открыл в 1819 г. датский профессор физики Ганс Эрстед. Проводя опыты, ученый обнаружил, что всякий раз, когда он включал ток, магнитная стрелка, находящаяся поблизости от проводника с током, стремилась повернуться перпендикулярно проводнику, а когда выключал, магнитная стрелка возвращалась в исходное положение. Ученый сделал вывод: вокруг проводника с током возникает магнитное поле, которое воздействует на магнитную стрелку.

Вы можете в этом убедиться, если сами проведете аналогичный опыт. Для этого потребуются: батарея гальванических элементов, например 3336Л, миниатюрная лампа накаливания, предназначаемая для карманного электрического фонаря, медный провод толщиной 0,2 — 0,3 мм в эмалевой, хлопчатобумажной или шелковой изоляции и компас. С помощью отрезков провода, удалив с их концов изоляцию, подключите к батарее лампу накаливания. Лампа горит, потому что образовалась электрическая цепь. Батарея в данном случае является источником питания этой цепи. Поднесите один из соединительных проводников поближе к компасу, смотрите рис. и вы увидите, как его магнитная стрелка сразу же станет поперек проводника. Она укажет направление круговых магнитных силовых линий, рожденных током.

При изменении направления тока в проводнике меняется и направление линий магнитного поля. При изменении направления тока в проводнике меняется и направление линий магнитного поля.

Наиболее сильное магнитное поле тока будет возле самого проводника. По мере удаления от проводника магнитное поле, рассеиваясь, ослабевает.
А если изменить направление тока в проводнике, поменяв местами подключение его к полюсам батареи? Изменится и направление магнитных силовых линий — магнитная стрелка повернется в другую сторону. Значит, направление силовых линий магнитного поля, возбуждаемого током, зависит от направления тока в проводнике.
Какова в этих опытах роль лампы накаливания? Она служит как бы индикатором наличия тока в цепи. Она, кроме того, ограничивает ток в цепи. Если к батарее подключить только проводник, магнитное поле тока станет сильнее, но батарея быстро разрядится.
Если в проводнике течет постоянный ток неизменного значения, его магнитное поле также не будет изменяться. Но если ток уменьшится, то слабее станет и его магнитное поле. Увеличится ток, усилится его магнитное поле, исчезнет ток — магнитное поле пропадет. Словом, ток и его магнитное поле неразрывно связаны и взаимно — зависимы.
Магнитное поле тока легко усилить, если проводник с током свернуть в катушку. Силовые линии магнитного поля такой катушки можно сгустить, если внутрь ее поместить гвоздь или железный стержень. Такая катушка с сердечником станет электромагнитом, способным притягивать сравнительно тяжелые железные предметы. Это свойство тока используется во множестве электрических приборов.

Проводник с током, свернутый в катушку, становится электромагнитом.

А если магнитную стрелку поднести к проводу с переменным током? Она станет неподвижной, даже если провод свернуть в катушку. Значит ли это, что вокруг проводника с переменным током нет магнитного поля? Магнитное поле есть, но оно тоже переменное. Магнитная же стрелка не будет отклоняться только вследствие своей «неповоротливости» — инерционности, она не будет успевать следовать за быстрыми изменениями магнитного поля.
Первый электромагнит, основные черты которого сохранились во многих современных электрических приборах, например в электромагнитных реле, излучателях головных телефонов, изобрел английский ученый Стерджен в 1821 г. А спустя два десятилетия после этого события французский физик Андре Ампер сделал новое, исключительно важное по тому времени открытие. Он опытным путем установил, что два параллельно расположенных проводника, по которым течет ток, способны совершать механическую работу: если ток в обоих проводниках течет в одном направлении, то они притягиваются, а если в противоположных, отталкиваются.
Догадываетесь, почему так происходит? В первом случае, когда направление тока в обоих проводниках одинаково, их магнитные поля, также имеющие одинаковое направление, как бы стягиваются в единое поле, увлекая за собой проводники. Во втором случае магнитные поля вокруг проводников, имеющие теперь противоположные направления, отталкиваются и тем самым раздвигают проводники.
В первой половине прошлого столетия ценнейший вклад в науку внес английский физик — самоучка Майкл Фарадей. Изучая связь между электрическим током и магнетизмом, он открыл явление электромагнитной индукции. Суть его заключается в следующем. Если внутрь катушки из изолированной проволоки быстро ввести магнит, стрелка электроизмерительного прибора, подключенного к концам катушки, на мгновение отклонится от нулевой отметки на шкале прибора.

Читайте также:  Если бьет током от удара

Энергия магнитного поля создает движение электронов - электрический ток.

При таком же быстром движении магнита внутри катушки, но уже в обратном направлении, стрелка прибора также быстро отклонится в противоположную сторону и вернется в исходное положение. Вывод мог быть один: магнитное поле пересекает провод и возбуждает (индуцирует) в нем движение свободных электронов — электрический ток. Впрочем, можно поступить иначе: перемещать не магнит, а катушку вдоль неподвижного магнита. Результат будет такой же. Магнит можно заменить катушкой, в которой течет постоянный ток. Магнитное поле этой катушки, вызванное током, при пересечении витков второй катушки также будет возбуждать в ней электродвижущую силу, создавая в ее цепи электрический ток.
Явление электромагнитной индукции лежит в основе действия генератора переменного тока, представляющего собой катушку из провода, вращающуюся между полюсами сильного магнита или электромагнита (на рис. катушка показана в виде одного витка провода).

Схема генератора переменного тока.

Вращаясь, катушка пересекает силовые линии магнитного поля, и в ней индуцируется (вырабатывается) электрический ток. В 1837 г. русский академик Б. С. Якоби открыл явление, обратное по действию генератора тока. Через катушку, помещенную в магнитном поле, ученый пропускал ток, и катушка начинала вращаться. Это был первый в мире электромагнитный двигатель. Фарадей, открывший закон электромагнитной индукции, опытным путем обнаружил еще очень важное явление — возможность передавать переменный ток из катушки в катушку на расстояние без какой — либо прямой электрической связи между ними. Суть этого явления заключается в том, что переменный или прерывающийся (пульсирующий) ток, текущий в одной из катушек, преобразуется в переменное магнитное поле, которое пересекает витки второй катушки и тем самым возбуждает в ней переменную ЭДС. На этой основе создан замечательный прибор, который называется трансформатор, играющий очень важную роль в электротехнике и радиотехнике.

ВОЗНИКНОВЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН.

Опыты Майкла Фарадея и его соотечественника и последователя Кларка Максвелла привели ученых к выводу, что переменное магнитное поле, рождаемое непрерывно изменяющимся током, создает в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, магнитное поле — электрическое и т.д. Взаимосвязанные, создаваемые друг другом магнитное и электрическое поля образуют единое переменное электромагнитное поле, которое непрерывно, как бы отделяясь и удаляясь от места возбуждения его, распространяется во всем окружающем пространстве со скоростью света, равной 300 000 км/с. Явление возбуждения переменным током электромагнитных полей принято называть излучением электромагнитных колебаний или излучением электромагнитных волн. Встречая на своем пути проводники, магнитные составляющие электромагнитных колебаний возбуждают в этих проводниках переменное электрическое поле, создающее в них такой же переменный ток, как ток, возбудивший электромагнитные волны, только несравненно слабее. На этом замечательном явлении и основана техника радиопередачи и радиоприема.

Длина волны есть расстояние, проходимое волной за один период, т. е. за время одного колебания. Зная скорость распространения радиоволн и частоту, можно определить длину волны.

Графическое изображение длины волны

Пусть, например, частота тока в антенне радиопередатчика составляет 1 000 000 гц. Тогда период колебания равен 0,000 001 сек. За одну секунду радиоволна проходит 300 000000 м, а за 0,000 001 сек она пройдет расстояние в миллион раз меньше, т. е. 300 м. Это и есть длина волны. Если частота тока станет вдвое меньше и будет составлять 500000 гц, то период колебания станет равным 0,000 002 сек. За это время радиоволна пройдет путь в 600 м. Чем меньше частота, тем больше длина волны, и наоборот.

Длина волны и частота обратно пропорциональны друг другу.

Длину радиоволны всегда можно вычислить, если разделить скорость распространения, равную 300 000 км/сек, на частоту. Чтобы длина волны получилась в метрах, скорость распространения следует принимать 300 000 000 м/сек

Зависимость длины волны от частоты

и наоборот если нам необходимо найти частоту:

Формула расчета частоты переменного тока через длину волны

Если говорить о длине волны, то нам следует упомянуть об условии возникновения радиоволны.Радиоволна — это ток высокой частоты. Токами высокой частоты называют токи,частота которых свыше 10 000 Гц. Когда такие токи циркулируют в проводнике они производят электромагнитные волны. Отделяясь от проводника полны распространяются в виде колец радиус которых увеличивается со скоростью 300 000 000 м/с.

Как происходит процесс излучения радиоволны

ДЛИНА ВОЛНЫ.

Так что же такое длина волны? — это расстояние между двумя электромагнитными кольцами, которые последовательно отделяются от антенны. За каждый период тока высокой частоты отделяется одно кольцо. Таким образом когда второе кольцо отделяется от антенны, первое уже прошло некоторое расстояние называемое длиной волны.

Равенство скорости распространения электромагнитных волн, создаваемых переменным током, и скорости света не случайно, потому что световые лучи, как, между прочим, и тепловые, по своей природе тоже электромагнитные колебания. Мысль о родстве световых и электрических явлений высказал русский ученый Михаил Васильевич Ломоносов еще в середине XVIII в. Теорию электромагнитных волн развил Кларк Максвелл в первой половине прошлого столетия. Однако только в 1888 г. немецкому ученому Генриху Герцу удалось опытным путем доказать сам факт существования электромагнитных волн и найти возможность обнаружить их. В его опытной установке излучателем электромагнитных волн был вибратор — два стержня с металлическими шарами на концах, источником напряжения питания вибратора — индукционная катушка Румкорфа (есть в каждом школьном физическом кабинете), а обнаруживателем электромагнитной энергии — резонатор, представляющий собой незамкнутый виток провода, тоже с шарами на концах.

Читайте также:  Мощность излучения ток насыщения

Опытная установка Г. Герца для возбуждения и обнаружения электромагнитных волн и графическое изображение затухающих электромагнитных волн.

Половинки вибратора заряжались до столь высокого напряжения, что между внутренними шарами через воздух проскакивала электрическая искра — искусственная молния в миниатюре. Происходил — электрический разряд. В этот момент, длившийся малые доли секунды, вибратор излучал короткую серию быстропеременных затухающих, т.е. убывающих по амплитуде, электромагнитных волн. Пересекая провод резонатора, расположенного поблизости, электромагнитная энергия возбуждала в нем электрические колебания, о чем свидетельствовала очень слабая искра, появлявшаяся между шарами резонатора. Еще разряд и новая очередь затухающих электромагнитных колебаний возбуждала в резонаторе слабый переменный ток. Так Генрих Герц нашел способ возбуждения электромагнитных волн и обнаружения их. Но он не представлял себе путей практического использования своего открытия.

Важные понятия и моменты, которые необходимо запомнить из этого урока: что такое магнитное поле, как оно воздействует на окружающие предметы, основные условия необходимые для возникновения магнитного поля. Понятие электромагнетизма и электромагнитной индукции, а так же условия возникновения электромагнитных колебаний под действием переменного тока — электромагнитные волны.

Содержание курса и следующий урок можете найди здесь.

Источник

Программный комплекс PTest Plus!

  • Общая информация
  • Принципы составления тестов
  • Отладка теста
  • Оценка теста
  • Определение и общие свойства
  • Дифференцируемость аналитических функций
  • Радиус сходимости производной и первообразной аналитических функций
  • Принцип максимума модуля
  • Нули аналитических функций
  • Целые аналитические функции и теорема Лиувилля
  • Кинематика (вар. 1)
  • Кинематика (вар. 2)
  • Кинематика (вар. 3)
  • Динамика (вар. 1)
  • Динамика (вар. 2)
  • Динамика (вар. 3)
  • Механические колебания
  • Электромагнитные колебания
  • Волновое движение
  • Постоянный ток (вар. 1)
  • Постоянный ток (вар. 2)
  • Атомы и молекулы
  • Основы МКТ
  • Атомы и излучение
  • Оптика (вар. 1)
  • Оптика (вар. 2)
  • Оптика (вар. 3)
  • Общая тематика

Для того, чтобы добавить ссылку на Ваш ресурс — пишите в обратную связь

Физический кроссворд по электромагнитным колебаниям (вариант 1)

Пнд, 2010-08-16 11:37 | admin

Физический кроссворд по электромагнитным колебаниям

По горизонтали:
1. Устройство, предназначенное для превращения механической энергии в энергию переменного тока.
7. Известный английский физик.
9. Движущаяся масса жидкости, газа.
11. Число колебаний в единицу времени.
12. Неподвижная часть генератора переменного тока.
14. Явление резкого возрастания амплитуды вынужденных колебаний.
15. Совокупность источника тока, нагрузки и соединительных проводов.
17. Ученый, чей маятник подтвердил вращение Земли.
19. Буква греческого алфавита.
20. Единица измерения частоты в системе СИ.
21. Английский физик.

По вертикали:
2. Способность проводника удерживать электрический заряд.
3. Подвижная часть генератора переменного тока.
4. Направленное движение заряженных частиц.
5. Сопротивление.
6. Электромагнит, который создает магнитное поле.
8. Буква греческого алфавита.
10. Электрическая цепь, в которой могут происходить свободные электромагнитные колебания.
12. Катушка индуктивности.
13. Явление разделения одноименных зарядов в проводнике, помещенном в электрическое поле.
16. Единица магнитной индукции в системе СИ.
17. Немецкий физик, в честь которого названа единица сопротивления.

Источник



Кроссворд по физике для учащихся 9 класса по теме «Электромагнитные явления»

Кроссворд по теме «Электромагнитные явления»

1).Русский ученый, построивший первым электродвигатель

2). Устройство, предназначенное для накопления заряда и энергии электрического поля

4). Устройство для увеличения или уменьшения напряжения и силы тока

6). Открыл явление электромагнитной индукции

8). Квант электромагнитного излучения

10).Передача и прием информации с помощью электромагнитных волн

12).Векторная величина, характеризующая магнитное поле

1). Изобретатель трансформатора

3). Единица индуктивности

5). Единица магнитной индукции

7). Явление возникновения индукции тока в катушке при изменении силы тока в ней

8). Единица электроемкости

9). Катушка с сердечником внутри

11). Тело, длительное время сохраняющее намагниченность

13). Одна из самых больших магнитных аномалий

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-495218

  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник