Меню

При размыкании вторичной цепи трансформатора тока

Обслуживание РЗиА и вторичных цепей — Трансформаторы тока и вторичные токовые цепи

Содержание материала

  • Обслуживание РЗиА и вторичных цепей
  • Обязанности оперативного персонала при обслуживании устройств РЗиА
  • Трансформаторы тока и вторичные токовые цепи
  • Трансформаторы напряжения и вторичные цепи напряжения
  • Источники и цепи постоянного оперативного тока
  • Способы питания оперативных цепей переменным током
  • Неисправности в цепях оперативного тока
  • Сигнальная аппаратура
  • Цепи сигнализации
  • Сигнализация замыкания на землю в сетях 3—35 кВ
  • Обслуживание цепей и устройств сигнализации
  • Газовая защита трансформаторов и автотрансформаторов
  • Обслуживание газовой защиты
  • Дифференциальная защита шин
  • Релейная защита шиносоединительных и обходных выключателей
  • АПВ
  • АВР
  • Операции с релейной защитой и АПВ при производстве переключений
  • Фиксирующие приборы и автоматические осциллографы
  • Графические условные обозначения в схемах

ГЛАВА ВТОРАЯ
ВТОРИЧНЫЕ ЦЕПИ, ИСТОЧНИКИ ПИТАНИЯ И ИХ ОБСЛУЖИВАНИЕ
К вторичным цепям относятся как оперативные цепи (в том числе цепи управления), так и цепи тока и напряжения. Рассмотрим сначала измерительные трансформаторы, являющиеся источниками питания цепей тока и напряжения.
В установках высокого напряжения измерительные трансформаторы изолируют реле устройств РЗА и приборы от цепей высокого напряжения, что значительно облегчает конструирование и условия эксплуатации этих реле и приборов.
Измерительный трансформатор состоит из магнитопровода, набранного из тонких листов трансформаторной стали, и обмоток, охватывающих его часть. Обмотка, подключаемая к первичной цепи подстанции, называется первичной, а обмотка, к которой подключаются измерительные приборы, реле и другая аппаратура, называется вторичной обмоткой измерительного трансформатора.
Согласно правилам техники безопасности вторичные обмотки измерительного трансформатора должны иметь постоянное заземление в одной точке схемы для предохранения персонала и оборудования вторичных цепей от высокого напряжения в случае повреждения изоляции между обмотками. Измерительные трансформаторы делятся на трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).
Трансформаторы тока и вторичные токовые цепи. Первичная обмотка ТТ включается последовательно в цепь присоединения, например линии, трансформатора. В цепь вторичной обмотки ТТ последовательно включают обмотки реле и приборов. Коэффициентом трансформации ТТ называют отношение номинального тока I1 первичной обмотки к номинальному току I2 вторичной обмотки, что приблизительно равно отношению числа витков w2 вторичной обмотки к числу витков W1 первичной обмотки:

Магнитные потоки, создаваемые токами первичной и вторичной обмоток в магнитопроводе, направлены навстречу друг другу. Результирующий магнитный поток определяется разностью этих магнитных потоков; в нормальных условиях работы он невелик. При конструировании ТТ сечение магнитопровода рассчитывают, исходя из нормального
значения результирующего магнитного потока. Вторичная обмотка трансформатора тока должна быть замкнута всегда на цепь с относительно малым сопротивлением. При обрыве цепи вторичной обмотки, когда через первичную обмотку проходит ток, магнитный поток в магнитопроводе значительно возрастает, так как исчезает магнитный поток, создаваемый вторичной обмоткой. В разомкнутой вторичной обмотке будет наводиться э. д. е., значение которой может достигать десятков тысяч вольт и быть смертельно опасным. Магнитопровод ТТ при этом будет перегреваться из-за возросшего магнитного потока, что может привести к повреждению изоляции обмоток и железа ТТ. С учетом этого обстоятельства во вторичных цепях ТТ устанавливают испытательные зажимы и испытательные блоки, позволяющие при проведении испытаний или проверок устройств РЗА и приборов подключать, например, измерительные приборы без разрыва вторичной цепи.
На рис. 1,а схематично показан испытательный зажим в нормальном режиме работы вторичной цепи, когда съемная перемычка 1 соединяет две части испытательного зажима. Измерительный прибор подключают к измерительным винтам 2 зажима параллельно съемной перемычке, не разрывая замкнутую цепь, а затем ослабляют винты 3 и отодвигают или снимают перемычку, вследствие чего измерительный прибор оказывается последовательно включенным в замкнутую вторичную цепь (рис. 1,6). С помощью испытательных зажимов можно также замкнуть накоротко вторичные обмотки ТТ без предварительного разрыва цепей с аппаратурой и приборами, для чего надлежит установить перемычку между измерительными винтами испытательных зажимов, установленных в фазных и нулевом проводах ТТ (см. штриховую линию на рис. 3).

Рис. I. Испытательный зажим во вторичной цепи ТТ: а — нормальный режим; б —включение амперметра
Испытательные блоки — это специальные четырех- или шестицепные (на четыре или на шесть цепей) разъемные контактные устройства, при помощи которых присоединение устройств РЗА или измерительных приборов
к вторичным цепям ТТ, а в некоторых случаях — и к вторичным цепям ТН, к источникам и цепям оперативного тока. Эти устройства обеспечивают возможность быстрого и надежного размыкания или замыкания цепей, а также производства проверок и регулировок реле и других устройств с безразрывным подключением приборов во вторичные цепи ТТ. Обеспечивается также возможность временных изменений в схемах защиты, необходимых при наладке и проверке, без производства переключений на зажимах панели. На рис. 2 показан испытательный блок на шесть цепей. Испытательный блок состоит из основания (корпуса) 1, в углублении которого установлены два ряда пружинящих контактов (пластин) 3, и съемной рабочей крышки 2 с контактными планками 4, соединяющими попарно пружинящие контакты в каждой цепи при вставленной в корпус рабочей крышке (рис. 2,в). К одному ряду верхних внешних зажимов 6 блока подключают провода, идущие к реле или приборам, а к другому ряду нижних внешних зажимов 7 подключают вторичные цепи от ТТ или от ТН или питающие цепи оперативного тока. При снятии рабочей крышки испытательного блока, верхние и нижние пружинящие контакты каждой цепи изолируются друг от друга, а соседние пружинящие контакты нижнего ряда, к которому подведены вторичные цепи от ТТ, закорачиваются без разрыва цепей на расположенные в глубине корпуса блока закорачивающие пластины 5 (рис. 2,а). На время проверок защиты персоналом службы РЗАИ рабочая крышка заменяется испытательной крышкой, электрически соединяющей испытательную схему или измерительные приборы с цепями устройств РЗА. В отличие от рабочей испытательная крышка 8 (рис. 2,г) вместо контактных планок имеет контактные пластины 9, электрически соединенные с измерительными зажимами 10 на внешней стороне крышки. При включении испытательной крышки с заранее подсоединенным к ней амперметром последний включается в цепь, проходящую через блок, без разрыва этой цепи.
В каждой крышке блока есть замок (на рис. 2 не показан), защелкивающийся при установке крышки на полную глубину и фиксирующий ее положение. Если по условиям эксплуатации испытательный блок должен длительное время находиться без рабочей крышки, то вместо нее в блок должна быть вставлена холостая крышка для предовращения попадания пыли и мусора внутрь блока. Холостая крышка не имеет внутреннего выступа, контактных планок или пластин и поэтому при своем включении сохраняет неизменным положение пружинящих контактов блока. Холостая крышка должна отличаться от рабочей крышки цветом. При установке испытательных блоков в шкафах открытого распределительного устройства шкафы должны оборудоваться подогревом.
Вторичные обмотки ТТ и обмотки реле (приборов) соединяют между собой по различным типовым схемам.

Читайте также:  Какие действия необходимо выполнить при освобождении пострадавшего от действия тока ми попп

Рис. 2. Устройство испытательного блока: а — корпус испытательного блока без крышки (со снятой левой боковиной); б — рабочая крышка испытательного блока; в — испытательный блок с вставленной рабочей крышкой (в разрезе); г — схема испытательного блока с испытательной крышкой, включенной для измерения тока в цепи

Нa рис. 3 в качестве примера приведена схема соединения вторичных обмоток ТТ и обмоток реле в полную звезду (имеются также схемы соединения в неполную звезду, в треугольник и др.) [2]. В этой схеме три одноименных конца вторичных обмоток (обозначены и1 или и2) соединены между собой и образуют нулевую точку «звезды», от остальных трех концов обмоток отходят фазные провода. Обмотки трех реле подключены с одной стороны к фазным проводам, другие концы обмоток реле соединены между собой и также образуют нулевую точку. Нулевые точки ТТ и реле соединены между собой проводом, который называют нулевым. В нормальном режиме нагрузки и при трехфазных к. з. по фазным проводам проходят равные по значению токи, соответствующие токам в первичной цепи, по нулевому проводу при этом проходит ток во много раз меньшего значения — так называемый ток небаланса. Ток небаланса возникает из-за отклонений значения и фазы вторичных токов ТТ; эти отклонения бывают различны в каждой фазе. Ток небаланса равен геометрической сумме вторичных токов трех фаз.

Рис. 3. Схема соединения вторичных обмоток ТТ и обмоток реле (приборов) в полную звезду (ИЗ — испытательные зажимы)
При однофазном замыкании на землю по фазному проводу поврежденной фазы и нулевому проводу проходит ток, соответствующий току замыкания на землю. Приведенная на рис. 3 схема является также фильтром токов нулевой последовательности; в выходную цепь этого фильтра (в нулевой провод) включают реле, которые должны действовать при замыканиях на землю. На кабельных линиях напряжением 35 кВ и ниже иногда устанавливают специальные ТТ нулевой последовательности (ТНП). Стальной магнитопровод ТНП кольцеобразной или прямоугольной формы охватывает трехфазный кабель или несколько трехфазных кабелей. К вторичной обмотке ТНП подключают реле. При прохождении по защищаемому кабелю токов нагрузки, токов трехфазных или двухфазных к. з. геометрическая сумма магнитных потоков в магнитопроводе ТНП теоретически равна нулю. При этом ток во вторичной обмотке „ТИП теоретически должен быть равен нулю. Однако вследствие некоторой несимметрии расположения жил кабеля или самих кабелей по отношению к вторичной обмотке ТНП в последней возникает небольшая э. д. с. и через обмотку реле проходит ток небаланса, который отстраивают от тока срабатывания реле. При прохождении по фазе кабеля тока однофазного замыкания на землю во вторичной обмотке ТНП индуцируется э. д. е., под действием которой появляется ток, достаточный для срабатывания реле.
Постоянное заземление вторичной обмотки ТТ в одной точке выполняют обычно на самом ТТ или на ближайшем к нему ряду зажимов. В сложных схемах релейной защиты, когда соединяют между собой вторичные обмотки нескольких групп ТТ, размещенных в разных местах подстанции, постоянное заземление вторичных цепей этих ТТ также должно выполняться в одной точке. Обычно это заземление устанавливают в месте сборки цепей групп ТТ (в распределительном устройстве или на панели релейной защиты).
Особенности производства операций в токовых цепях. Эксплуатационные работы (проверки и испытания), связанные с ТТ, могут ограничиваться только вторичными цепями ТТ (измерение сопротивления изоляции, проверка цепей релейной защиты под нагрузкой и т. д.), а могут охватить и первичную цепь ТТ. Оперативный персонал должен четко представлять себе объем и место предстоящих работ и выполнять все подготовительные работы в полном соответствии с правилами техники безопасности [5].
Проведение операций с испытательными блоками во вторичных цепях ТТ разрешается оперативному персоналу лишь в некоторых случаях (см. ниже). При этом оперативный персонал проходит специальное обучение, во время которого должны быть рассмотрены варианты всех операций, их содержание и последовательность. Оперативный персонал, допущенный к операциям с испытательными блоками, должен быть также проинструктирован персоналом службы РЗАИ на рабочем месте.
Основные правила выполнения операций с испытательными блоками заключаются в следующем. При снятии рабочей крышки испытательного блока необходимо нажать пальцами на обе защелки, чтобы открыть замки с двух сторон крышки, а затем резко без перекосов выдернуть крышку в направлении, перпендикулярном панели. Вставлять рабочую крышку нужно до защелкивания замка.
При наличии двух выключателей на присоединение операции в токовых цепях одного из двух комплектов ТТ
с помощью испытательных блоков надлежит проводить с временным отключением устройств релейной защиты, которые по принципу действия и чувствительности могут срабатывать ложно из-за кратковременного возникновения несимметрии токов при рабочем режиме (например, дифференциально-фазные высокочастотные защиты, чувствительные токовые защиты нулевой последовательности соответствующих ступеней, защиты параллельных линий и т. п.) [6]. Если указанные выше операции поручается выполнить оперативному персоналу, службой РЗАИ должны быть даны письменные указания с перечнем всех защит, которые должны быть при этом временно (и на какое время) отключены.

Читайте также:  Измерение сопротивления постоянному току обмоток трансформатора мостом р333

Рис. 4. Схема трехфазного пятистержневого трансформатора напряжения

После окончания работы во вторичных цепях ТТ оперативный персонал должен проверить, введены ли в действие на отключение все защитные устройства, которые выводились из действия.

Источник

Опасность размыкания вторичной обмотки ТТ

В данной статье речь пойдет об опасности размыкания вторичной обмотки трансформаторов тока (ТТ).

Трансформаторы тока предназначены для преобразования первичного тока до наиболее удобных для измерительных приборов и реле значений и отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформатор тока работает при постоянной нагрузке во вторичной цепи и переменной величине тока в первичной обмотке, т.е. при переменном магнитном потоке. Нормальный режим его работы близок к условиям короткого замыкания, так как его вторичная обмотка замкнута на последовательно соединенные обмотки приборов, реле и других аппаратов с незначительным сопротивлением.

Трансформатор тока представляет собой замкнутый магнитопровод 2 (рис.9.35 а) [Л1, с.285-287] и две обмотки. Первичную обмотку 1 включают последовательно в контролируемую цепь (цепь измеряемого тока) I1. Ко вторичной обмотке 3 присоединяют последовательно токовые обмотки приборов и реле, обтекаемые током I2. Тогда коэффициент трансформации равен [Л1, с.286]:

Коэффициент трансформации трансформаторов тока

Номинальные вторичные токи равны 5 А и 1 А.

На векторной диаграмме (рис. 9.35 б) показана результирующая магнитнодвижущая сила (МДС) F. В нормально режиме работы она сравнительно невелика, что обусловливает малые значения магнитного потока (Ф) и электродвижущей силы Е2 (ЭДС), наводимой во вторичной обмотке.

Рис. 9.35 - Трансформатор тока

При разомкнутой вторичной обмотке ток в ней равен нулю, т.е. I2 = 0, и МДС вторичной обмотки также равна нулю, т.е. F2=I2w2=0. Так как ток в первичной обмотке I1 и ее МДС F1 практически не изменяются, то результирующая МДС F увеличивается во много раз и становится равной F1.

Соответственно увеличивается магнитный поток Ф, величина которого ограничивается лишь насыщением сердечника и индукцией в стали сердечника, при этом за счет повышенных потерь в стали сердечника происходит сильный нагрев магнитопровода, вплоть до пожара.

В результате магнитный поток Ф наведет во вторичной обмотке значительную ЭДС, а напряжение на разомкнутых концах этой обмотки может возрасти с нескольких десятков до тысяч вольт, что, опасно для:

  • обслуживающего персонала;
  • изоляции вторичной обмотки;
  • приборов, реле и терминалов защит.

Поэтому при эксплуатации запрещается разрывать вторичную цепь работающего трансформатора тока согласно ПУЭ 7-издание пункт 3.4.16, тем более что это может совпасть с режимом к.з. в первичной обмотке.

ПУЭ пункт 3.4.16

Перед отключением прибора от трансформатора тока необходимо предварительно замкнуть накоротко его вторичную обмотку используя испытательные блоки или зашунтировать обмотку реле, прибора и только после этого отъединить прибор.

Следует запомнить, что:

Нормальным режимом работы ТТ является режим К3 , а режим с разомкнутой вторичной обмоткой (режим холостого хода) — аварийным режимом . Поэтому если ТТ включен и к его вторичной обмотке не подключена нагрузка, то эту обмотку следует обязательно закоротить.

1. Электроснабжение сельского хозяйства. И.А. Будзко, 2000 г.

Источник

Почему вторичную обмотку трансформатора тока нельзя оставлять разомкнутой?

Вторичную обмотку трансформатора тока нельзя оставлять разомкнутой, если по первичной обмотке проходит измеряемый ток, по следующим причинам.

При размыкании вторичной цепи, что может быть, например, при отключении амперметра, исчезает встречный магнитный поток Ф2 (рис. 9.4), следовательно, по сердечнику начинает проходить большой переменный поток Ф1, который вызывает наведение большой ЭДС во вторичной обмотке трансформатора (до тысячи вольт), так как вторичная обмотка имеет большое число витков. Наличие такой большой ЭДС нежелательно потому, что это опасно для обслуживающего персонала и может привести к пробою изоляции вторичной обмотки.

При возникновении в сердечнике большого потока Ф1 в самом сердечнике начинают наводиться большие вихревые токи, сердечник начинает сильно нагреваться, и при длительном нагреве может выйти из строя изоляция обеих обмоток трансформатора. Поэтому надо помнить, что, если надо отключить измерительные приборы, то необходимо обесточить первичную обмотку ТТ.

На паспорте ТТ в виде дроби указывается коэффициент трансформации трансформатора тока:

где I1 – ток первичной обмотки, А;

I2 – ток вторичной обмотки, А;

w1 – число витков первичной обмотки;

w2 – число витков первичной обмотки.

Например, 100/5 А означает, что данный трансформатор тока рас считан на первичный ток 100 А и вторичный ток – 5 А. Коэффициент трансформации этого трансформатора K =100/5=20.

Зная К и получив показания амперметра во вторичной цепи трансформатора тока I2, можно определить первичный ток

Читайте также:  Что производит ток тепловое действие

Большинство трансформаторов тока выпускаются с номинальным вторичным током 1 А, 5 А.

9.3.3 Измерение напряжения. Для измерения напряжения служат вольтметры. Они подключаются параллельно участку, на котором необходимо измерить напряжение.

Внутреннее сопротивление вольтметра должно быть значительно больше сопротивления участка к которому он подключается, так как в противном случае вольтметр будет оказывать влияние на токораспределение в электрической цепи и результаты измерения будут содержать большую погрешность.

Для расширения пределов измерения вольтметров последовательно с ними включают добавочные сопротивления.

В приборах на напряжение до 300 В, добавочные сопротивления вмонтированы в корпус приборов или укреплены снаружи приборов.

Для измерения напряжений свыше 300 В добавочные сопротивления присоединяют к одному из выводных зажимов прибора.

Добавочные сопротивления рассчитывают так, чтобы в цепи с увеличенным напряжением по обмотке (рамке) вольтметра проходил тот же ток, что и при номинальном напряжении, на которое рассчитана обмотка.

Обмотка рассчитана на ток

где – ток, протекающий через рамку вольтметра, А;

– напряжение на рамке, В;

– сопротивление рамки, Ом.

При увеличении напряжения в цепи в п раз, ток должен остаться прежним

Пример.Вольтметром на 15 В необходимо измерить напряжение 150 В. Определить добавочное сопротивление, если внутреннее сопротивление вольтметра 900 Ом.

Решение:

1. Определим отношение измеряемого напряжения к напряжению вольтметра

2. Добавочное сопротивление

Для измерения высоких напряжений синусоидального тока применяют измерительные трансформаторы напряжения.

Первичная обмотка трансформатора напряжения включается параллельно потребителю и имеет большое число витков.

В паспорте трансформатора напряжения указывается отношение напряжений первичной и вторичной обмоток. Например 5000/100 означает, что номинальное напряжение первичной обмотки 5000 В, вторичной – 100 В.

Коэффициент трансформации напряжения

Зная К и напряжение вторичной обмотки, можно определить первичное напряжение:

Большинство трансформаторов напряжения выпускается номинальным вторичным напряжением 100 В.

9.3.4 Измерение мощности электрического тока. Для измерений мощности в цепях постоянного и в цепях синусоидального тока промышленной частоты применяются ваттметры, обеспечивающий непосредственный отсчет мощности по шкале.

Ваттметр электродинамической системы состоит из двух катушек (рамок):

— неподвижной, токовой из толстого провода, включаемой последовательно с потребителем;

— подвижной обмотки напряжения, выполненной из тонкого провода, включаемой параллельно потребителю.

При постоянном токе вращающий момент электродинамического прибора пропорционален произведению токов в его обмотках:

где – ток в неподвижной катушке, А;

– ток в подвижной катушке, А;

В ваттметре ток подвижной обмотки прямо пропорционален приложенному напряжению

где Rп – сопротивление подвижной катушки, Ом.

Следовательно, вращающий момент прямо пропорционален мощности. Поэтому электродинамический ваттметр имеет равномерную шкалу, т.е.

Вращающий момент электродинамического прибора, включенного в цепь синусоидального тока

То есть показания ваттметра пропорциональны току, напряжению и cosφ, то есть активной мощности цепи Р.

Ваттметр имеет четыре зажима, к двум выводится токовая обмотка, к другим двум – обмотка напряжения. Первая пара зажимов включается в измеряемую цепь последовательно, вторая – параллельно. Начала обмоток обозначается звездочками (*) и соединяются вместе. Это необходимо, чтобы токи в катушках пропускались в определенном направлении.

На шкале ваттметра указываются верхние пределы измерений тока и напряжения. Если, например на шкале ваттметра обозначено I = 5 А и U = 100 В, это значит, что верхний предел измерения ваттметра Р = 500 Вт, то есть им можно измерять мощности до 500 Вт.

Очевидно, что цена деления ваттметра равна

где п – число делений шкалы

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник



Почему вторичную обмотку трансформатора тока нельзя оставлять разомкнутой

Трансформатор тока нормально работает в режиме короткого замыкания и не допускает работы в холостую. При работе с трансформаторами тока необходимо следить за тем, чтобы вторичная обмотка трансформатора тока при подключенной первичной не оставалась разомкнутой.

Вторичную обмотку трансформатора тока нельзя оставлять разомкнутой, если по первичной обмотке проходит измеряемый ток, по следующим причинам.

При размыкании вторичной цепи, что может быть, например, при отключении амперметра, исчезает встречный магнитный поток Ф2, следовательно, по сердечнику начинает проходить большой переменный поток Ф1, который вызывает наведение большой ЭДС во вторичной обмотке трансформатора тока (до тысячи вольт), так как вторичная обмотка имеет большое число витков. Наличие такой большой ЭДС нежелательно потому, что это опасно для обслуживающего персонала и может принести к пробою изоляции вторичной обмотки трансформатора тока.

Схема включения измерительного трансформатора тока

Схема включения измерительного трансформатора тока

При возникновении в сердечнике большого потока Ф1 в самом сердечнике начинают наводиться большие вихревые токи, сердечник начинает сильно нагреваться, и при длительном нагреве может выйти из строя изоляция обеих обмоток трансформатора. Поэтому надо помнить, что, если надо отключить измерительные приборы, то необходимо сначала закоротить либо вторичную, либо первичную обмотку трансформатора.

У некоторых трансформаторов тока для этой цели предусмотрены специальные устройства (гнезда со штекерами, перемычки и т. д.). Если таких устройств нет, то необходимо их сделать самим.

Источник