Меню

Постоянный электрический ток законы постоянного тока реферат

Постоянный электрический ток

Описание: Плотность тока Уравнение непрерывности Электродвижущая сила Закон Ома для однородного и неоднородного участка цепи Правила Кирхгофа Мощность тока Закон Джоуля Ленца Электрический ток. Плотность тока Постоянный ток это движение электрических зарядов по проводнику с постоянной скоростью Сила тока это величина заряда переносимого через рассматриваемую поверхность в единицу времени Электрический.

Дата добавления: 2015-01-29

Размер файла: 172.85 KB

Работу скачали: 25 чел.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Постоянный электрический ток

  1. Электрический ток. Определение. Плотность тока
  2. Уравнение непрерывности
  3. Электродвижущая сила
  4. Закон Ома для однородного и неоднородного участка цепи
  5. Правила Кирхгофа
  6. Мощность тока
  7. Закон Джоуля — Ленца
  1. Электрический ток. Определение. Плотность тока

Постоянный ток — это движение электрических зарядов по проводнику с постоянной скоростью

Сила тока — это величина заряда, переносимого через рассматриваемую поверхность в единицу времени

Электрический ток может быть обусловлен движением как положительных, так и отрицательных носителей

За направление тока принимается направление, в котором перемещаются положительные заряды

Плотность тока — это вектор, численно равный силе тока dI через расположенную в данной точке перпендикулярную к направлению движения носителей площадку dS к величине этой площадки.

За направление вектора плотности принимается направление +.

Для тока, не изменяющегося со временем (постоянного тока)

Единица измерения в СИ [ I ] = 1 А

  1. Уравнение непрерывности

Пусть в среде, где течет ток, имеем замкнутую поверхность S . Движение зарядов из области создает ток. В самой области S происходит убыль заряда.

По теореме Остроградского – Гаусса

Уравнение непрерывности в дифференциальной форме

Для постоянного тока

  1. Электродвижущая сила

ЭДС – величина, равная работе сторонних сил над единичным положительным зарядом.

Единица измерения 1 В

Кроме сторонних сил, на заряд действуют в замкнутой цепи силы электростатического поля.

Следовательно, результирующая сила, действующая на заряд в каждой точке равна

Величина, численно равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного положительного заряда, называется падением напряжения на этом участке

  1. Закон Ома для однородного и неоднородного участка цепи

В случае однородного проводника

В случае неоднородного проводника

Электрическое сопротивление R (Ом)

Для замкнутой цепи

Закон Ома в дифференциальной форме

  1. Правила Кирхгофа

Узел – точка цепи, в которой сходятся более, чем 2 проводника.

  1. Алгебраическая сумма токов, сходящихся в узле, равна 0.
  1. В замкнутом контуре, содержащем источник тока, сумма падений напряжений на всех элементах контура равна сумме ЭДС, действующих в контуре.

Алгоритм нахождения токов через сопротивления

  1. Произвольно выбираем направления токов и обхода контуров.
  2. Составляем систему уравнений по I и II правилам Кирхгофа
  1. Решая уравнение, находим значения токов
  2. Если значение тока получается со знаком «-», значит, на самом деле его направление на рисунке надо изменить на противоположное.
  1. Мощность тока

Мощность, развиваемая током на участке цепи

Единица измерения мощности 1 Вт = 1 Дж/с

  1. Закон Джоуля – Ленца

Удельная тепловая мощность – количество тепла, выделяющегося в единице объема в единицу времени

Закон Джоуля – Ленца в дифференциальной форме

Источник

Законы постоянного тока

Автор работы: Пользователь скрыл имя, 24 Ноября 2013 в 16:44, реферат

Описание работы

Термин постоянный ток не совсем корректен: в действительности для постоянного тока неизменным является прежде всего значение напряжения (измеряется в Вольтах), а не значение тока (измеряется в Амперах), хотя значение тока также может быть неизменным. Путаница возникла в результате того, что термин ток употребляется для описания электрических процессов вообще. Поэтому термин постоянный ток следует понимать как постоянное напряжение. Далее будем использовать термин именно в этом смысле.

Содержание работы

1.Введение ……………………………………………………………….. 3
2.Условия существования электрического тока ………………………. 4-6
3.Законы постоянного тока ……………………………………………. 7-12
4.Источники постоянного тока …………………………………………. 13
5.Заключение ……………………………………………………………. 14
6.Список литературы …………………………………………………….. 15

Файлы: 1 файл

Реферат_Постоянный ток.doc

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Чувашская государственная сельскохозяйственная академия»

Кафедра «Физики и технической механики»

На тему: «Законы постоянного тока»

Работу выполнила: студентка

1 курса 1 группы 1 подгруппы

факультета Смирнова И.А.

Проверила: Чебоксарова А.В.

  1. Введение ……………………………………………………………….. 3
  2. Условия существования электрического тока ………………………. 4-6
  3. Законы постоянного тока ……………………………………………. 7-12
  4. Источники постоянного тока …………………………………………. 13
  5. Заключение ……………………………………………………………. 14
  6. Список литературы …………………………………………………….. 15

Термин постоянный ток не совсем корректен: в действительности для постоянного тока неизменным является прежде всего значение напряжения (измеряется в Вольтах), а не значение тока (измеряется в Амперах), хотя значение тока также может быть неизменным. Путаница возникла в результате того, что термин ток употребляется для описания электрических процессов вообще. Поэтому термин постоянный ток следует понимать как постоянное напряжение. Далее будем использовать термин именно в этом смысле.

Термин постоянный ток имеет несколько значений:

Питающее напряжение, величина которого не зависит от времени. Пример: устройство запитано от источника постоянного тока. В данном смысле использование термина постоянный ток (так же, как и переменный ток) подчёркивает «силовой» характер данного сигнала, то есть это электрический сигнал, передающий мощность, предназначенный для питания электрических устройств. В других смыслах используют более точные термины: напряжение, сигнал и т.п.

Постоянная составляющая сигнала.

Термин также может использоваться не в смысле напряжения, а в смысле частоты сигнала (для постоянного тока она нулевая). Пример: рабочий диапазон частот: от постоянного тока до 1 МГц.

Применение: Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя. Иногда в некоторых устройствах постоянный ток преобразуют в переменный ток преобразователями (инверторами).

2.Условия существования электрического тока

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

наличие в среде свободных электрических зарядов

создание в среде электрическог о поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

1. Сила тока — I, единица измерения — 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

I = lim Dq/Dt , (*)
Dt — 0

т.е. I = q’, где q’ — производная от заряда по времени.

2. Плотность тока — j, единица измерения — 1 А/м 2 .

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

3. Электродвижущая сила источника тока — э.д.с. ( e ), единица измерения — 1 В (Вольт).

Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

4. Сопротивление проводника — R, единица измерения — 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

l — длина проводника,
S — площадь поперечного сечения,
r — коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

Коэффициент a называется температурным коэффициентом сопротивления:

Для химически чистых металлов a > 0 и равно 1/273 К -1 . Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимо сти, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

Читайте также:  Между одинаковыми катушками с током

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s

5. Напряжение — U , единица измерения — 1 В.

Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

3. Законы постоянного тока

  • Электрический ток.
  • Сила тока.
    Закон Ома для участка цепи.
  • Сопротивление проводников.
    Последовательное и параллельное соединение проводников.
    Электродвижущая сила.
  • Закон Ома для полной цепи.
    Работа и мощность тока.

Всякое движение электрических зарядов называют электрическим током. В металлах могут свободно перемещаться электроны, в проводящих растворах — ионы, в газах могут существовать в подвижном состоянии и электроны, и ионы.

Условно за направление тока считают направление движения положительных частиц, поэтому в металлах это направление противоположно направлению движения электронов.

Плотность тока — величина заряда, проходящего в единицу времени через единицу поверхности, перпендикулярной к линиям тока. Эта величина обозначается j и рассчитывается следующим образом:

Здесь n — концентация заряженных частиц, e — заряд каждой из частиц, v — их скорость.

Сила тока i — величина заряда, проходящего в единицу времени через полное сечение проводника. Если за время dt через полное сечение проводника прошел заряд dq, то

По другому, сила тока находится интегрированием плотности тока по всей поверхности любого сечения проводника. Единица измерения силы тока — Ампер. Если состояние проводника (его температура и др.) стабильно, то между приложенным к его концам напряжением и возникающим при этом током существует однозначная связь. Она называется Закон Ома и записывается так:

R — электрическое сопротивление проводника, зависящее от рода вещества и от его геометрических размеров. Единичным сопротивлением обладает проводник, в котором возникает ток 1 А при напряжении 1 В. Эта единица сопротивления называется Ом.

Закон Ома в дифференциальной форме:

где j — плотность тока, Е — напряженность поля, s — проводимость. В этой записи закон Ома содержит величины, характеризующие состояние поля в одной и той же точке.

Различают последовательное и параллельное соединения проводников.
При последовательном соединении ток, протекающий по всем участкам цепи, одинаков, а напряжение на концах цепи складывается как алгебраическая сумма напряжений на всех участках.

При параллельном соединении проводников постоянным остается напряжение, а ток складывается из суммы токов, протекающих по всем ветвям. В этом случае складываются величины, обратные сопротивлению:

Для получения постоянного тока на заряды в электрической цепи должны действовать силы, отличные от сил электростатического поля; их называют сторонними силами.

Если рассматривать полную электрическую цепь, необходимо включить в нее действие этих сторонних сил и внутренне сопротивление источника тока r. В этом случае закон Ома для полной цепи примет вид:

Е — электродвижущая сила (ЭДС) источника. Она измеряется в тех же единицах, что и напряжение. Величину (R+r) называют иногда полным сопротивлением цепи.

Сформулируем правила Киркгофа:

Первое правило: алгебраическая сумма сил токов в участках цепи, сходящихся в одной точке разветвления, равна нулю.

Второе правило: для любого замкнутого контура сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

Мощность тока рассчитывается по формуле

Закон Джоуля-Ленца. Работа электрического тока (тепловое действие тока)

A=Q=UIt=I 2 Rt=U 2 t/R.

  • Электронная проводимость металлов. Сверхпроводимость.
    Электрический ток в растворах и расплавах электролитов.
    Закон электролиза. Электрический ток в газах.
    Самостоятельный и несамостоятельный разряды.
    Понятие о плазме. Ток в вакууме.
    Электронная эмиссия. Диод. Электронно-лучевая трубка.

Электрический ток в металлах есть движение электронов, ионы металла участия в переносе электрического заряда не принимают. Другими словами, в металлах есть электроны, способные перемещаться по металлу. Они получили название электронов проводимости. Положительные заряды в металле представляют собой ионы, образующие кристаллическую решетку. В отсутствии внешнего поля электроны в металле движутся хаотично, претерпевая соударения с ионами решетки. Под воздействием внешнего электрического поля электроны начинают упорядоченное движение, накладывающееся на их прежние хаотические флуктуации. В процессе упорядоченного движения электроны по-прежнему сталкиваются с ионами кристаллической решетки. Именно этим и обусловлено электрическое сопротивление.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам классической механики. Взаимодействием электронов между собой пренебрегают, взаимодействие электронов с ионами сводят только к соударениям. Можно сказать, что электроны проводимости рассматривают как электронный газ, подобный идеальному атомарному газу в молекулярной физике. Поскольку средняя кинетическая энергия на одну степень свободы для такого газа равна kT/2, а свободный электрон обладает тремя степенями свободы, то

Источник

Постоянный электрический ток

Автор работы: Пользователь скрыл имя, 19 Декабря 2012 в 00:02, реферат

Краткое описание

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.
За направление тока выбрано направление движения положительно заряженных частиц.
Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Содержание

Постоянный электрический ток…………………………………………………….3
Условия существования постоянного электрического тока………………….3
Основные понятия……………………………………………………………….3
Последовательное и параллельное соединение проводников……………….5
Правило Кирхгофа………………………………………………………………6
Электрический ток в жидкостях……………………………………………………7
Электрический ток в газах…………………………………………………………..9
Плазма………………………………………………………………………………..10

Прикрепленные файлы: 1 файл

Постоянный электрический ток (реферат).docx

Содержание

  1. Постоянный электрический ток…… ……………………………………………….3
    1. Условия существования постоянного электрического тока………………….3
    2. Основные понятия…………………………………………………………… ….3
    3. Последовательное и параллельное соединение проводников……………….5
    4. Правило Кирхгофа………………………………………………………… ……6
  2. Электрический ток в жидкостях……………………………………………………7
  3. Электрический ток в газах…………………………………………………………..9
  4. Плазма……………………………………………………………… ………………..10

Постоянный электрический ток.

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Условия существования постоянного электрического тока.

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока, S — площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение — скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил, q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l — длина участка проводника, S — площадь поперечного сечения проводника.

Проводимостью называется величина, обратная сопротивлению

где G — проводимость.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке, R — сопротивление участка.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где φ1 — φ2 + ε = U напряжен ие на заданном участке цепи, R — электрическое сопротивление заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R — электрическое сопротивление внешнего участка цепи, r — электрическое сопротивление внутреннего участка цепи.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением R

Последовательное и параллельное

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся последовательно или параллельно.

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

Во всех последовательно соединенных проводниках сила тока одинакова:

Читайте также:  Позволяет току течь через него

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

Величина, обратная сопротивлению разветвленного участка, равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

Падение напряжения во всех проводниках одинаково:

Силы тока в проводниках обратно пропорциональны их сопротивлениям

Смешанное соединение — комбинация параллельного и последовательного соединений.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел — точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n — число проводников, сходящихся в узле, Ii — сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла — отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают токи противоположного направления. ЭДС источников электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае — отрицательными.

Электрический ток в жидкостях

В металлическом проводнике элект рический ток образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода. К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода. К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.

При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.

Проводники второго рода называются электролитами, а явление, происходящее в электролите при прохождении через него электрического тока, — электролизом.

Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом, а другая, соединенная с отрицательным полюсом,— катодом.

Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

Частицы молекулы, обладающие электрическим зарядом, называются ионами. При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана разность потенциалов, иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду — катоду, а отрицательные ионы — к аноду.

Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

Явление электролиза при прохождении тока через раствор медного купороса: С — сосуд с электролитом, Б — источник тока, В — выключатель

Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным — ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди Сu и образуется молекула медного купороса СuSО4, возвращаемая обратно электролиту.

Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода — анода.

Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса ZnSO4. Цинк также будет переноситься с анода на катод.

Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах электричество переносится разноименно заряженными частицами вещества — ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионной проводимостью.

Источник



Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:

Информация:

Описание (план):

1. Понятие о постоянном токе
Основные характеристики и законы цепи постоянного тока
Для практических целей необходим постоянный ток, имеющий неизменное значение и протекающий в одном направлении в течение любого времени. Чтобы получить такой непрерывный электрический ток, нужно иметь постоянное напряжение. Его создают так называемые генераторы или источники электродвижущей силы.
Наиболее простые цепи постоянного тока — линейные.
2. Условия существования постоянного электрического тока.
Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.
Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.
Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

3. Основные понятия
Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.
Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока, S — площадь сечения проводника.
Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.
Напряжение — скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил, q — электрический заряд.
Электрическое сопротивление — физическая величина, характеризующая электрические свойства участка цепи.

Читайте также:  Настроить колебательный контур резонанс токов

где ? — удельное сопротивление проводника, l — длина участка проводника, S — площадь поперечного сечения проводника.
Проводимостью называется величина, обратная сопротивлению

где G — проводимость.
4. Электрическая цепь и ее элементы
В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.
Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:
1) Источники электрической энергии (питания).
Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).
2) Потребители электрической энергии.
Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.
3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.
Все элементы цепи охвачены одним электромагнитным процессом.
В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.
1.2. Основные понятия и определения для электрической цепи
Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2,…,Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.
При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R,R1 и R2.

Рис. 1.2
Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.
При расчете в схеме электрической цепи выделяют несколько основных элементов.
Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r,E,R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.
Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.
Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.
Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:
а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;
б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;
в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.
Все электрические цепи делятся на линейные и нелинейные.
Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.
Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.
Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.
5. Основные законы цепей постоянного тока
Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.
Закон Ома для участка цепи
Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома

или UR=RI. (1.1)
В этом случае UR=RI – называют напряжением или падением напряжения на резисторе R, а
– током в резисторе R.
При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

В этом случае закон Ома для участка цепи запишется в виде:
I=Ug.
6. Закон Ома для всей цепи
Этот закон определяет зависимость между ЭДС E источника питания с внутренним сопротивлением r (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ=r+R всей цепи:
(1.2)
Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.
7. Шунты и добавочные сопротивления
Шунт — сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.
Если амперметр рассчитан на силу тока I , а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

Добавочное сопротивление — сопротивление, подключаемое последовательно с вольтметром (гальванометром), для расширения его шкалы при измерении напряжения.
Если вольтметр рассчитан на напряжение U , а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

8. Правила Кирхгофа
Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.
Узел — точка разветвленной цепи, в которой сходится более двух проводников.
1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n — число проводников, сходящихся в узле, Ii — сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла — отрицательными.
2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают токи противоположного направления. ЭДС источников электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае — отрицательными.

Список литературы:
1. Иванов Н. И., Равдоник В. С. Электротехника / Иванов Н. И., Равдоник В. С. — М.: Высшая школа, 2004
2. Клаусинтцер П. Введение в электротехнику / Клаусинтцер П. – М.: Энрегоатомиздат, 2005.
3. М. П. Тиличенко Электротехника: Учебное пособие / М. П. Тиличенко, 2004 г.
4. Общая электротехника./ Под ред. А. Г. Блажкина. – А.: Энергия, 1979.
5. Волынский Б. А. и др. Электротехника. – М.: Энергоатомиздат , 1987.

Источник