Меню

Полоса пропускания усилителей переменного тока

Усилитель

Электронный усилитель – это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Что такое усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

динамический микрофон

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Усилитель

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

зенитный комплекс тор

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Что такое черный ящик в электронике

очень черный ящик

В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Усилитель

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

услитель четырехполюсник

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

Усилитель

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

усилитель на транзисторе

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

усилитель на транзисторе принцип работы

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

усилитель в роли черного ящика

Обобщенная схема усилителя

Она выглядит примерно вот так:

обобщенная схема усилитель

Как мы можем видеть на схеме, ко входу усилительного каскада через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала с ЭДС EИ и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

усилитель напряжения коэффициент

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

схема усилителя

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е. Rвх >>Rи и Rн намного больше, чем Rвых (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых. Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

Усилитель

где KI – коэффициент усиления по току

Iвых – сила тока в цепи нагрузки, А

Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Читайте также:  Акб пусковой ток в чем разница

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

Усилитель

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

Усилитель

KP – коэффициент усиления по мощности

Pвых – мощность на выходе усилителя, Вт

Pвх – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Усилитель

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

Усилитель

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

UВых – напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

Усилитель

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

cos φ – где φ – это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Усилитель

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.

Источник

Характеристики усилителей: классификация, диаграммы, основные параметры

рис. 2.1

Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).

  1. Классификация усилителей
  2. По частоте усиливаемого сигнала:
  3. По роду усиливаемого сигнала
  4. По функциональному назначению
  5. Амплитудная характеристика усилителя
  6. Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.
  7. Переходная характеристика усилителя

Классификация усилителей

Все усилители можно классифицировать по следующим признакам:

По частоте усиливаемого сигнала:

  • усилители низкой частоты (УНЧ) для усиления сигналов от десятков герц до десятков или сотен килогерц;
  • широкополосные усилители, усиливающие сигналы в единицы и десятки мегагерц;
  • избирательные усилители, усиливающие сигналы узкой полосы частот;

По роду усиливаемого сигнала

  • усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от нуля герц и выше;
  • усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;

По функциональному назначению

  • усилители напряжения, усилители тока и усилители мощности в зависимости от того, какой из параметров усилитель усиливает. Основным количественным параметром усилителя является коэффициент усиления.

В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению КU, току Кi или мощности КР:

где Uвх, Iвх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;

Uвых , Iвых — амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;

Рвх, Рвых — мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К1 · К2 · … · Кn

Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:

Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:

где КU— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.

Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:

где Рист — мощность, потребляемая усилителем от источника питания.

Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.

К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:

где Uвх и Iвх — амплитудные значения напряжения и тока на входе усилителя;

∆Uвых и ∆Iвых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.

Интересное видео о параметрах усилителя смотрите ниже:

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

рис. 2.2

Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

рис. 2.3

где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3). При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

рис. 2.4

Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K0 / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений МН = K0 / KН и МВ = K0 / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f). рис. 2.5Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6. рис. 2.6Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

Читайте также:  Как создать вихревые токи

рис. 2.7

Переходная характеристика усилителя

Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).

рис. 2.8

Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.

Ещё одно интересное видео по теме смотрите ниже:

Источник

Полоса пропускания усилителей переменного тока

4. 1. Схемотехника построения антенных усилителей

Электронное устройство, предназначенное для увеличения параметров (тока, напряжения, мощности) электрического сигнала, называется усилителем.

Основной усилительный элемент в схемах антенных усилителей -высокочастотный транзистор, который подбирается по характеристикам при проектировании конкретных схем для MB и ДМВ диапазонов ТВ вещания.

Рабочий режим выбранного транзистора в конкретной проектируемой схеме отличается от параметров, приведенных в ТУ. Значение большинства параметров зависит от рабочего режима и температуры, причем с увеличением температуры зависимость их от режима сказывается более сильно. В справочной литературе, как правило, приводятся типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, частоты и т. д.

Весьма важными параметрами при выборе транзисторов для антенных усилителей являются: граничная частота — frp, коэффициент шума —Кш, коэффициент усиления по напряжению — Ки и некоторые другие.

Ухудшение характеристик транзисторов на частотах, близких к frp. обусловлено технологическими возможностями и их электрической прочностью (допустимой толщиной базы, длиной затвора). С увеличением частоты возрастает влияние паразитных параметров транзисторов:

4-11.jpg

междуэлектродных емкостей, индуктивностей выводов, сопротивления базы и др. Увеличение входной резистивной проводимости транзистора уменьшает усиление антенного усилителя и увеличивает Кш, поэтому необходимо уменьшать индуктивность вывода эмиттера и соединительных проводов. Для этого в СВЧ-транзисторах делают два плоских коротких вывода эмиттера, которые обычно припаивают непосредственно к шине нулевого потенциала («земляной»).

В усилителях изменением режима транзисторов и связи с источником и нагрузкой можно добиться максимального усиления либо минимального коэффициента шума. Уровень шумов транзисторных антенных усилителей зависит от способа их

построения и режима работы, величины сопротивления источника сигналов. Снижение шума биполярных транзисторов достигается уменьшением тока коллектора Iк и тока базы Iб (без существенного снижения коэффициента передачи тока h21, а также применением транзисторов

с высокой предельной частотой fв и малым сопротивлением rб. Транзисторы выбирают так, чтобы выполнялось условие

где: fгp — граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Использование транзисторов с низким коэффициентом шума, выполнение условия согласования их с источником и нагрузкой и выбор оптимального режима работы являются основными способами повышения чувствительности антенных усилителей.

Наиболее распространены три схемы включения усилительного элемента (транзистора).

4-12.jpg

В схемах с ОБЩИМ КОЛЛЕКТОРОМ (ОК) и ОБЩИМ СТОКОМ (ОС) коэффициент передачи напряжения близок к единице, а выходной сигнал по величине и фазе повторяет входной (Uвыx=Uвx). Эти каскады называют «повторителями напряжения» (эмиттерный или стоковый повторитель). Такая схема включения обеспечивает малую входную емкость и наибольшее входное сопротивление, которое сильно возрастает при увеличении сопротивления нагрузки. Выходное сопротивление схемы наименьшее. Используются эти схемы как согласующие и разделительные, обеспечивающие передачу сигнала от высокоомных источников к низкоомным цепям и каскадам.

4-13.jpg

В схемах с ОБЩЕЙ БАЗОЙ (ОБ) и ОБЩИМ ЗАТВОРОМ (03) выходной ток примерно равен входному, поэтому их называют «повторителями тока». Такая схема обладает большой входной проводимостью (малым входным сопротивлением), самым большим по сравнению с другими схемами выходным сопротивлением и обеспечивает в основном усиление по напряжению. Коэффициент усиления по току мало изменяется при изменениях режима работы, температуры и замене экземпляров транзистора. Малая входная емкость схемы улучшает параметры каскада (ОБ, 03) на высоких частотах, хотя малое входное сопротивление является недостатком данных схем.

Схема с ОБЩИМ ЭМИТТЕРОМ (ОЭ) для биполярных и, ОБЩИМ ИСТОКОМ (ОИ) для полевых транзисторов обеспечивает наибольшее усиление по мощности, но изменяет фазу выходного напряжения на 180° по отношению к входному. При увеличении сопротивления нагрузки входное сопротивление уменьшается. Используются эти схемы в тех случаях, когда при минимальном числе транзисторов требуется получить наибольшее усиление. Однако входная емкость транзисторов Сэб влияет на сужение полосы пропускания на высоких частотах.

Одним из эффективных методов увеличения входного сопротивления эмиттерного повторителя является увеличение коэффициента передачи транзистора по току h21э. В схеме «суперальфа» (называемой также схемой Дарлингтона) ток эмиттера первого транзистора управляет базой второго транзистора, в связи с чем результирующий коэффициент передачи тока h21э равен произведению коэффициентов передачи по току отдельных транзисторов. Отсюда

Zвх = h21э* h21э* Rэ. (4.2)

Путем различных сочетаний каскадов возможны построения других усилительных схем:

ОЭ=ОБ — каскадная схема, обладающая достаточно малыми внутренними шумами, и повышенной устойчивостью;

ОК=ОБ — дифференциальный усилитель, обладающий по сравнению с каскадной схемой тем преимуществом, что здесь происходит компенсация напряжения Uбэ обоих транзисторов.

4-14.jpg

4. 1. 1. Схемные особенности антенных усилителей

При усилении слабых телевизионных сигналов большое значение имеет уровень собственных шумов входных каскадов усилителей. Поэтому в телевизионных антенных усилителях используют СВЧ-транзисторы с низкими величинами шумовых параметров. На шумовые параметры антенных усилителей также влияют и паразитные параметры применяемых пассивных элементов — сопротивлений и емкостей.

Широкополосные антенные усилители предназначены для усиления сигналов в полосе частот нескольких диапазонов метровых и (или) дециметровых волн. Обычно широкополосный усилитель строится на основе резистивного усилительного каскада, обладающего наиболее равномерной частотной характеристикой в сравнительно широком диапазоне частот. Для расширения полосы пропускания как в сторону низких, так и в сторону высоких частот в схему вводятся специальные цепи коррекции. Однако характеристики транзисторов ухудшаются на верхних частотах, что приводит к сужению полосы пропускания усилителей на этих частотах. В узкополосных усилителях (в пределах полосы пропускания) изменением характеристик транзисторов можно пренебречь.

Апериодический (резистивный) усилитель с емкостной связью называется также RC-усилителем. Название схемы связано с характером сопротивления нагрузки RH и емкостной связью каскада с источником сигнала, или с предыдущим каскадом (или нагрузкой следующего каскада). Апериодические усилители обеспечивают высокую стабильность коэффициента усиления и высокую чувствительность при усилении слабых сигналов. Коэффициент усиления в диапазоне высоких частот можно рассчитать по формуле:

4-1-11.jpg

где f — частота, для которой определяют усиление;

Rвых — сопротивление, полученное при параллельном соединении Rн + Rвx2;

= fгp:

fв = 1/2л* Rэкв* Co, (4.4)

где Rэкв = сумма сопротивлений, шунтирующих выходной каскад Со — сумма емкостей, шунтирующих выходной каскад.

Коэффициент усиления в диапазоне низких частот можно рассчитать по формуле:

4-1-12.jpg

Избирательными (селективными) называют усилители, полоса пропускания (задержания) которых сужена для отделения сигналов в нужной полосе частот от сигналов, помех или шумов других частот. По принципу действия и схемному выполнению избирательные усилители можно разделить на резонансные, полосовые и т. д. Резонансные усилители предназначены для усиления сигналов в заданной узкой полосе частот. Основная их особенность состоит в том, что нагрузка каскада — частотно-зависимая, в качестве которой выступает параллельный LC-контур, настроенный на частоту усиливаемого сигнала. Колебательный контур можно включить в усилитель по трансформаторной, автотрансформаторной, емкостной схеме.

4-1-13.jpg

4-1-14.jpg

4-1-15.jpg

Рис. 4. 7. Способы согласования в селективных усилителях

Чем больше добротность контура, тем уже полоса пропускания усилителя, тем больше усиление. Подключая параллельно резонансному контуру сопротивление, можно уменьшать его добротность и тем самым влиять на коэффициент усиления и ширину полосы пропускания усилителя. Дополнительное преимущество селективных усилителей по сравнению с апериодическими заключается в компенсации настройкой колебательных контуров влияния паразитных емкостей монтажа, снижающих усиление на верхних частотах. Увеличивая полное сопротивление нагрузки, компенсируют паразитное емкостное влияние, тем самым повышая усиление. Последнее выполняют с селекцией, распределенной по каскадам усилителя либо сосредоточенной в одном каскаде — с помощью фильтра сосредоточенной селекции (ФСС).

Читайте также:  Как найти максимальную силу тока в батарее

4.1.2. Требования к усилительным устройствам

К параметрам, которые характеризуют схемы усилителей, относятся коэффициент усиления, неравномерность коэффициента усиления, полоса усиливаемых частот и др.

КОЭФФИЦИЕНТОМ УСИЛЕНИЯ (К) усилителя называют отношение выходной величины к входной. В зависимости от рассматриваемой электрической величины, различают коэффициенты усиления по напряжению. току и мощности.

КОЭФФИЦИЕНТ УСИЛЕНИЯ ПО НАПРЯЖЕНИЮ (Ku) — это отношение напряжения на выходе усилителя к входному:

4-1-21.jpg

Коэффициент усиления по напряжению в многокаскадных усилителях равен произведению коэффициентов усиления каждого каскада:

Кобщ. = K1 К2 К3 . (в относительных единицах) или

Кобщ = K1 + К2 + К3 + . (дБ).

КОЭФФИЦИЕНТ УСИЛЕНИЯ ПО ТОКУ(Ki)- это отношение выходного тока к входному:

. Кi=Iвых/Iвх=20lg(Iвых/Iвх)(дБ). (4.8)

КОЭФФИЦИЕНТ УСИЛЕНИЯ ПО МОЩНОСТИ (Кр) — это отношение выходной мощности к входной:

Кр=Pвых/Pвх=10lg(Pвых/Pвх) (4.9)

НЕРАВНОМЕРНОСТЬ КОЭФФИЦИЕНТА УСИЛЕНИЯ — величина, характеризующая изменение коэффициента усиления в пределах рабочего диапазона частот. Определяется как отношение максимального коэффициента усиления к минимальному в полосе усиливаемых частот.

АМПЛИТУДНО-ЧАСТОТНАЯ ХАРАКТЕРИСТИКА (АЧХ) — зависимость коэффициента усиления или амплитуды (напряжения) на выходе усилителя от частоты входного сигнала, неизменного по величине. Так как параметры элементов усилителей зависят от частоты, то величина выходного сигнала будет постоянной только в определенном диапазоне частот, называемом полосой пропускания.

ПОЛОСА ПРОПУСКАНИЯ (В) или ДИАПАЗОН УСИЛИВАЕМЫХ ЧАСТОТ- область частот, в которой коэффициент усиления изменяется не более, чем это допустимо по техническим условиям. Допустимые изменения коэффициента усиления в пределах полосы пропускания зависят от назначения и условий работы усилителя. Обычно считается допустимым ослабление уровня сигнала на 3 дБ (2^0.5 = 0,707 раз) по сравнению с максимальным значением на резонансной частоте (частотах). Ширина полосы пропускания определяется как разность между верхней и нижней граничными частотами. B=fв-fн. (4.10)

4-1-22.jpg

Рис. 4.8. Полоса пропускания усилителя

В зависимости от назначения антенные усилители могут быть относительно узкополосными [полоса пропускания менее октавы, fв/fн

ДИНАМИЧЕСКИЙ ДИАПАЗОН (Д) — диапазон уровней усиливаемых входных сигналов, ограничиваемый снизу собственным шумом и сверху допустимыми нелинейными искажениями сигнала:

Д= 20lg(Uвх.max/Uвх.min) (дБ). (4.11)

КОЭФФИЦИЕНТ ШУМА [F] — параметр канала приема (передачи), выражаемый отношением мощности сигнала к мощности шума и позволяющий численно оценить шумовые характеристики устройств (в большинстве случаев значение параметра указывается в децибелах).

Источник



Назначение и классификация электронных усилителей , страница 2

KU (дБ)=20×lgKU,

если KU (дБ)=1, то KU =1,12.

Динамический диапазон усиления — диапазон амплитудной характеристики, на котором увеличение входного сигнала вызывает пропорциональное увеличение сигнала на выходе (рис. 3, зона II)

Полоса пропускания усилителя – это диапазон частот, в пределах которого изменение коэффициента усиления не превышает заданной величины (рис. 6).

Полосу пропускания Df определяют на амплитудно-частотной характеристике, построенной как зависимость коэффициента усиления от частоты К=F(f). Допустимым уровнем уменьшения коэффициента усиления для усилителей низкой частоты принято считать на нижней fH и верхней fВ частотах полосы пропускания KН =KB =0,707КО (по допустимым коэффициентам частотных искажений МНВ= ). Здесь KН, KB, КО — коэффициенты усиления на нижней, верхней и средней частотах полосы пропускания.

Рис. 6. Определение полосы пропускания усилителя низкой частоты.

Полосу пропускания находят как разность между fВи fН

Df=fВ fН.

К параметрам усилителей относят и различные искажения сигнала. Искажения бывают частотные, фазовые, нелинейные.

Частотные искажения определяют коэффициентами частотных искажений на верхней и нижней частотах МВ и МН

где wВ и wН – верхняя и нижняя круговые частоты;

tВ и tН – постоянные времени, зависящие от элементов схемы усилителя, влияющих на частотные искажения на верхних или нижних частотах.

Определим постоянные времени tВ и tН для однокаскадного усилителя с общим эмиттером (рис. 7)

tВ=tb +tК,

где tb – постоянная времени, зависящая от граничной частоты усиления транзистора fb,

tK – постоянная времени, зависящая от емкости СК коллекторного перехода транзистора;

где rK – дифференциальное сопротивление закрытого коллекторного перехода,

RK – коллекторная нагрузка,

RН– нагрузка усилителя.

Рис. 7. Однокаскадный усилитель с общим эмиттером.

Таким образом, на частотные искажения на верхних частотах МВ влияют усилительный прибор – транзистор своими параметрами fb, CK и rK и элементы схемы RK и RH.

На нижней частоте wН на частотные искажения МН будут влиять конденсаторы СР, СЭ и СС, так как реактивное сопротивление конденсатора хС=1/wС и с уменьшением рабочей частоты хС будет увеличиваться и конденсаторы будут оказывать все большее влияние:

tН=tН Ср+tН Сэ+tН Сс,

где tНСр – постоянная времени, зависящая от емкости конденсатора СР, величины сопротивления источника входного сигнала RГ и сопротивления , — входное сопротивление транзистора; rБ – удельное сопротивление базы, rЭ — дифференциальное сопротивление открытого эмиттерного перехода; b— коэффициент усиления транзистора;

tН Сэ– постоянная времени, зависящая от емкости конденсатора СЭ, величины сопротивления RЭ и сопротивления rЭ;

tН Сс – постоянная времени, зависящая от емкости конденсатора СС и величины rК, RКи RН.

Зная МН и МВ, можно рассчитать коэффициенты усиления и .

Определив частотные искажения МВ и МН для однокаскадного усилителя, можно найти МВ и МН для многокаскадного усилителя:

Таким образом, создавая многокаскадный усилитель и добиваясь как можно большего КОБЩ., не нужно забывать что частотные искажения будут увеличиваться по такой же зависимости.

Фазовые искаженияразличны на верхней и нижней частотах:

Нелинейные искажения возникают при работе усилительного прибора на нелинейных участках вольт-амперной характеристики. Оценивают нелинейные искажения коэффициентом нелинейных искажений g или клирфактором

где U2, U3. Un — амплитуды высших гармонических составляющих в выходном напряжении UВЫХ, появление которых вызвано отличием его формы от синусоидальной;

U1 — амплитуда первой (основной) гармоники сигнала.

Коэффициент полезного действия усилителя

где PВЫХ — мощность, выделяемая в нагрузке усилителя;

P0— мощность, потребляемая от источника питания.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Adblock
detector