Меню

Полная характеристика электрического тока

Электрический ток

Электри́ческий ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Содержание

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. [1] Несмотря на это, скорость распространения собственно электрического тока равна скорости света, то есть скорости распространения фронта электромагнитной волны.

Различают переменный (англ. alternating current , AC), постоянный (англ. direct current , DC) и пульсирующий токи, а так же их всевозможные комбинации.

  • Постоянный ток — ток, направление и величина которого слабо меняются во времени.
  • Переменный ток — это ток, величина и (или) направление которого меняются во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
    Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Переменный ток высокой частоты проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Сила и плотность тока

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

По закону Ома сила тока Iдля участка цепи прямо пропорциональна приложенному напряжению Uк участку цепи и обратно пропорциональна сопротивлению Rпроводника этого участка цепи :

I = \frac<U data-lazy-src=

\vec<j data-lazy-src=

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения в конденсаторе определяется по формуле:

I_D = \frac<<\rm d data-lazy-src=

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Электробезопасность

Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА;
  • минимально ощутимый человеком переменный ток составляет около 1 мА;
  • неотпускающим называется ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного — 50 мА;
  • фибрилляционным порогом называется сила переменного тока около 100 мА, воздействие которого дольше 0.5 секунд с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

Источник

Характеристики тока.

Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.

Электрический ток являет собой эффект направленного движения электрических зарядов (в газах — ионы и электроны, в металлах — электроны), под воздействием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

Обычно за направление электрического берут направление положительного заряда.

Далее мы рассмотрим такие характеристики тока, как:

  • мощность тока;
  • напряжение тока;
  • сила тока;
  • сопротивление тока.

Мощность тока.

Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.

Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощ­ность (элек­три­че­ская и ме­ха­ни­че­ская) из­ме­ря­ет­ся в Ват­тах (Вт).

Мощ­ность тока не за­ви­сит от вре­ме­ни про­те­ка­ния элек­три­че­ско­го тока в цепи, а опре­де­ля­ет­ся как про­из­ве­де­ние на­пря­же­ния на силу тока.

Напряжение тока.

Напряжением электрического тока называется величина, которая показывает, какую работу совершило электрическое поле при перемещении заряда от одной точки до другой. Напряжение при этом в различных участках цепи будет отличаться.

Читайте также:  Расчет токов короткого замыкания зачем

К примеру: напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет намного больше, и величина напряжения будет зависеть от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: U=A/q, где

  • U — напряжение,
  • A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Сила тока.

Силой тока называют количество заряженных частиц которые протекают через поперечное сечение проводника.

По определению сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Сила электрического тока измеряется прибором, который называется Амперметром. Величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. К примеру: говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в повседневной жизни не используются. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Сопротивление тока.

Электрическим сопротивлением называется физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивление тока (часто обозначается буквой R или r) считается сопротивление тока, в определённых пределах, постоянной величиной для данного проводника. Под электрическим сопротивлением понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.

Условия возникновения электрического тока в проводящей среде:

1) присутствие свободных заряженных частиц;

2) если есть электрическое поле (присутствует разность потенциала между двумя точками проводника).

Виды воздействия электрического тока на проводящий материал.

1) химическое — изменение химического состава проводников (происходит в основном в электролитах);

2) тепловое — нагревается материал, по которому течет ток (в сверхпроводниках этот эффект отсутствует);

3) магнитное — появление магнитного поля (происходит у всех проводников).

Главные характеристики тока.

1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.

Сила тока определяется амперметром.

2. Напряжение U — равняется разности потенциалов на участке цепи.

Напряжение определяется вольтметром.

3. Сопротивление R проводящего материала.

а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);

б) от температуры t°С (или Т): R = R0 (1 + αt),

  • где R0 – сопротивление проводника при 0°С,
  • α – температурный коэффициент сопротивления;

в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.

Источник

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Закон Ома для участка цепи. Вольт — амперная характеристика тока. Соединение проводников.

Когда по какому-либо участку протекает ток, то между силой тока и напряжением для этого участка существует определённая функциональная зависимость, которую называют вольт-амперной характеристикой.
Сила тока на участке цепи прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

Соединение проводников
• Последовательное соединение
1. При последовательном соединении сила тока во всех участках цепи одинакова

2. При последовательном соединении напряжение на внешней цепи равно сумме напряжений на отдельных участках
U=U+U+U
З. Напряжение на отдельных участках цепи при последовательном соединении прямо пропорциональны сопротивлениям участков

UUU=RRR
4. При последовательном соединении эквивалентное сопротивление всей цепи равно сумме сопротивлений отдельных участков цепи

R=R+R+R
• Параллельное соединение
1. При параллельном соединении напряжения на отдельных ветвях и на всём разветвлении одинаково

U=U=U=U
2. Ток до и после разветвления равен сумме токов в отдельных ветвях

3. Токи в отдельных ветвях разветвления обратно пропорциональны сопротивлениям этих ветвей
I+I+I=1/R+1/R+1/R

4. Проводимость всего разветвления равна сумме проводимостей. отдельных ветвей

Закон Ома для полной цепи. Физический смысл ЭДС. Внутренней и внешнее сопротивление цепи. Соединение одинаковых источников электрической энергии в батарею.

Сила тока в электрической цепи с одним источником ЭДС прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений внешней и внутренней цепей.

Величина, измеряемая отношением работы сторонних сил, совершаемой источником тока при перемещении заряда по замкнутой цепи, к величине заряда, называется электродвижущей силой источника (ЭДС)
ɛ=A/g — ЭДСчисленно равна энергии, полученной единичным электрическим зарядом во внутренней цепи, а напряжение равно той энергии, которую он теряет во внешней цепи.

Внутренней цепью является источник электрической энергии, а внешней вся остальная часть.

Магнитный поток. Закон электромагнитной индукции. Правило правой руки для индукционного тока.

Магнитный Поток — поток вектора магнитной индукции В через какую-либо поверхность. через малую площадку dS, в пределах которой вектор В неизменен. Для замкнутой поверхности магнитный поток равен нулю, что отражает отсутствие в природе магнитных зарядов — источников магнитного поля.

Закон электромагнитной индукции — ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило правой руки.Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется правилом правой руки: Если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входила в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Автоколебательные системы. Ток высокой частоты и его особенности.

Для того чтобы получить незатухающие колебания нужно иметь посторонний источник энергии.,

удовлетворяющий 2 условиям: Поступление энергии за период должно быть точно ее убыли из системы.

Внешняя сила должна действовать в «такт» с собственными колебаниями.

Производство электрической энергии. Генератор.

Индукционные генераторы.

Электрические машины, в которых механическая энергия превращается в электрическую с помощью явления электромагнитной индукции, называется индукционными генераторами.

Закон преломления света.

1. Преломленный луч лежит в той же плоскости, в которой лежат падающий луч и перпендикуляр, восстановленный в точке падения луча к границе разделов двух сред.

2. При всех изменениях углов падения и преломления отношение синуса угла падения к синусу угла преломления для данных двух сред есть величина постоянная, называется показателем преломления второй среды относительно первой. (относительный показатель преломления)Он показывает, насколько среда уменьшает скорость распространения света в себе.

Абсолютный показатель преломления-показатель преломления данного вещества по отношению к вакууму. Указывает во сколько раз скорость света в вакууме больше скорости света в данном веществе. N=

Явление при котором световое излучение полностью отражается от поверхности раздела прозрачных сред, называется полным отражением. Наименьший угол падения, при котором наступает полное отражение, называется предельным углом полного отражения.Используется в оптических приборах: бинокли, перископах.

Читайте также:  Возникновения магнитного поля в катушке при пропускании электрического тока через нее

Цвета тонких пленок.

Белый свет падает на тонкую пленку. Частично свет отражается от верхней поверхности пленки, частично, пройдя пленку, отражается от ее нижней поверхности. Обе отраженные волны отличаются разностью хода. Белый свет монохроматичен он содержит электромагнитные волны разной длин от 400 до 760нм. Из-за того что разность хода зависит от длины волны, максимумы интерференционной картины для разных длин волн получаются в разных точках приемника. Поэтому пленки имеют радужный окрас.

Голография и её применение.

Сущность идеи состояла в фиксации полной информации о предмете.. Изображения получаемые

в фотоаппаратах регистрируют интенсивность волны. Фаза волны теряется. Габорг предложил

использовать явление интерференции чтоб зафиксировать частотные соотношения в волне. Если фотография регистрирует 1 параметр волны –амплитуду то, по методу регистрации полная информации о всех параметрах волны –частоте фазы и амплитуде. Голографический метод состоит из 2 этапов. Сначала получают интерференционную картину, Оба потока которые отражаются от зеркала и от предмета образуют интерференционную картину., представляющую собой чередование темных и светлых пятен. Для восстановления голограммы ее освещают излучениями.

Достоинства: В обычной фотографии каждый участок эмульсии изображает отдельный участок предмета. В голограмме каждый участок содержит информацию о всей картине .Голограмму характеризует большая емкость информации по сравнению с фотоснимком.

Применяется в количественном исследовании воздушных потоков в аэродинамических трубах.

52. Виды излучения. Тепловое и люминесцентное излучение (основные характеристики с примерами).

Свет- Электромагнитные волны излучают при ускоренном движении заряженных частиц. Излучение переходит при переходе из стационарного состояния с большей энергией в стационарное состояние с меньшей .При поглощении света атом переходит из стационарного состояния с меньшей энергией в состояние в большей энергией, Излучая атом теряет полученную энергию и для непрерывного свечения необходим приток энергии .

Тепловое излучение — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии. Примером теплового излучения является свет от лампы накаливания.

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины

волны испускаемого света.

Квантовая оптика. Абсолютно чёрное тело. Закон Стефана — Больцмана. Распределение энергии в спектре. Квантовая гипотеза Планка.

Излучение испускаемое нагретыми телами наз. тепловым. Каждое тело может не только испускать но и поглощать. Опыты показали что чем больше энергии тело излучает тем сильнее оно поглощает излучение. Хар-кой любого тела является поглощательная способность(показывает какая доля энергии поглощается телом)

Тело которое при любой не разрушающей его температуре полностью поглощает всю энергию падающего на него света любой частоты наз абсолютно черным.(отверстие в ящике сферической формы)Абсолютно черное тело является наиболее интенсивным источником теплового излучения. При оной температуре черное тело испускает в единицу времени больше энергии чем любое другое тело.

Закон ст.б-интегральной светимостью тела наз отношение мощность излучения к площади поверхности излучателя. Спектральной светимостью наз отношение светимости в данном диапазоне длин волн к ширине диапазона.

Задача о распределении энергии излучения абсолютно черного тела между волнами разной длинны сыграла огромную роль .ее решение привело к созданию квантовой физики. на рисунке хар-ие распределение энергии в спектре при разных Темп. площадь ограниченная каждой кривой определяет интенсивность полного излучения. Площадь быстро растет с увелич темп. все кривые имеют максимумы. Длинна волны на которую приходится максимум энергии излучения обратно пропорциональная абсолютной температуре.

Планка- абсолютно черное тело испускает и поглощает свет не непрерывно а определенными порциями энергии –квантами

59. Фотоэффект. Законы фотоэффекта. Квантовая теория фотоэффекта. Фотон и его энергетические характеристики.

Явление выравнивания электронов из твердых и жидких тел под действием света наз внешним фотоэлектрическим эффектом. Фотоэффект создается ультрафиолетовыми лучами.

Законы: максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности,

-для каждого вещества сущ красная граница фотоэффекта

-число фотоэлектронов вырываемых из катода за 1 с прямо пропорционально интенсивности света

Ур Эйнштейна –h*v=Aв+m*vв2 /2 Красная граница фотоэффекта зависит только от работы выхода электрона.

Фотон его импульс направлен световому лучу .чем больше частота тем больше энергия фотона и тем отчетливее выражены корпускулярные свойства света.

Фотохимические законы

1. Каждый поглощенный веществом фотон вызывает превращение одной молекулы.

2. Молекула вступает в фотохимическую реакцию под действием фотона лишь в том случае, когда энергия фотона не меньше определеннного значения необходимого для разрыва молекулярных связей.

Световое давление.Прибор Лебедева представляет собой очень чувствительные крутильные весы подвижной частью является легкая рама с укрепленными на ней крылышками — светлыми и черными дисками. Так на черный диск почти вдвое меньше давления, чем на светлый. Плотность энергии Лебедев измерял с помощью специально сконструированного калориметра, направляя на него пучок света на определенное время и регистрируя повышение температуры.

Свет – это распространяющиеся в пространстве фотоны, то фотон обладает импульсом. Импульс фотона существенно отличается от импульса других элементарных частиц. Покоящихся фотонов не существует .Если распространяющуюся волну остановить то свет прекратит свое существование, значит фотоны будут поглощены атомами вещества, а их энергия перейдет в другой вид энергии.

Открытие нейтрона. Открытие протона. Протонно — нейтронная модель ядра. Нуклоны.

Открытие нейтрона. В начале 30-х гг. были обнаружены неизвестные ранее лучи. Они были названы бериллиевым излучением. так как возникали при бомбардировке альфа — частицами бериллия.
В 1932 г английский учёный Джеймс Чедвик (ученик Резерфорда) с помощью опытов, проведённых в камере Вильсона, доказал, что бериллиевое излучение представляет собой поток электрически нейтральных частиц, масса которых приблизительно равна массе протона. Отсутствие у исследуемых частиц электрического заряда следовало, в частности, из того, что они не отклонялись ни в электрическом, ни в магнитном поле. А массу частиц удалось оценить по их взаимодействию с другими частицами.
Эти частицы были названы нейтронами (ни тот, ни другой).

Открытие протона.В 1913 г. Э. Резерфорд выдвинул гипотезу о том, что одной из частиц, входящих в состав атомных ядер всех химических элементов, является ядро атома водорода.

Основание: массы атомов химических элементов превышают массу атома водорода в целое число раз (т.е. кратны ей).

В 1919 г. Резерфорд поставил опыт по исследованию взаимодействия альфа — частиц с ядрами атомов азота.

В этом опыте альфа — частица, летящая с огромной скоростью, при попадании в ядро атома азота выбивала из него какую- то частицу. По предположению Резерфорда, этой частицей было ядро атома водорода, которое Резерфорд назвал протоном (первый).

Нуклон.Так как протон и нейтрон по взаимодействию ядерными силами не отличаются друг от друга, их часто рассматривают как одну частицу нуклон в двух различных состояниях (ядро). Нуклон в состоянии без электрического заряда называется нейтроном, нуклон в состоянии с положительным электрическим зарядом называется протоном.

Одно из замечательных свойств ядерных сил — свойство насыщения — заключается в том, что нуклон оказывается способным к ядерному взаимодействию одновременно лишь с небольшим числом нуклонов-соседей. Свойство насыщения ядерных сил делает их в некоторой мере сходными с силами связи атомов в молекулах.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

Читайте также:  Изменить вращение коллекторного мотора переменного тока

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Источник



ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Все мы гении. Но если вы будете судить рыбу по её способности взбираться на дерево, она проживёт всю жизнь, считая себя дурой.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 27. Лекция 27-1. Электрический ток, его характеристики. Сопротивление. Закон Ома.

Проводники отличаются от диэлектриков тем, что в них есть свободные заряды, которые могут перемещаться по всему объему проводника.

Если изолированный проводник поместить в электрическое поле , то на свободные заряды qв проводнике будет действовать сила . В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, не скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника равно нулю.

Однако, в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током.

Электрический ток – упорядоченное движение заряженных частиц.

За направление электрического тока принято направление движения положительных свободных зарядов.

В металлах носителями зарядов являются электроны — отрицательно заряженные частицы, поэтому электрический ток в металлах всегда направлен против дижения электронов.

Количественной мерой электрического тока служит сила тока I.

Сила тока – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Сила тока численно равна количеству зарядов, прошедших через поперечное сечение проводника за 1 секунду.

Упорядоченное движение электронов в металлическом проводнике
I — сила тока, S – площадь поперечного сечения проводника, – электрическое поле.

Единица измерения силы тока в Международной системе единиц СИ ампер [А].

Прибор для измерения силы тока называется амперметр.

Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток.

На схемах электрических цепей амперметр обозначается .

Амперметр обладает некоторым внутренним сопротивлением RA. Внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

Кратковременный ток в проводнике можно получить, если соединить этим проводником два заряженных проводящих тела, которые имеют различный потенциал. Ток в проводнике исчезнет, когда потенциал тел станет одинаковым. Для существования электрического тока в проводнике необходимо создать в нем и длительное время поддерживать электрическое поле.

Условия существования электического тока:

1.Наличие свободных зарядов внутри проводника,

2. Наличие разности потенциалов на концах проводника (создание электрического поля внутри проводника)

Электрический ток – это упорядоченное движение заряженных частиц, которое создается электрическим полём, а оно при этом совершает работу. Работа токаэто работа сил электрического поля, создающего электрический ток.

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. При перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы.

Работа электростатических сил при перемещении единичного заряда равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Величину U 12 принято называть напряжением на участке цепи 1–2.

Напряжениеэто физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2.


В случае однородного участка напряжение равно разности потенциалов: U 12 = φ 1 – φ 2

Единица измерения напряжения в Международной системе единиц СИ вольт [В].

Прибор для измерения напряжения называется вольтметр.


Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.

На схемах электрических цепей амперметр обозначается .

Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Аналогично тому, как трение в механике препятствует движению, сопротивление проводника создает противодействие направленному движению зарядов и определяет превращение электрической энергии во внутреннюю энергию проводника. Причина сопротивления: столкновение свободно движущихся зарядов с ионами кристаллической решетки.

Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.

В СИ единицей электрического сопротивления проводников служит ом [Ом]. Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Электрическое сопротивление проводника зависит от размеров и формы проводника и от материала, из которого изготовлен проводник.

S – площадь поперечного сечения проводника
l – длина проводника
ρ – удельное сопротивление проводника.

Сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения.

Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением проводника. Оно численно равно сопротивлению проводника длиной 1 м и площадью сечения 1 мм 2 , изготовленного из данного вещества. Единица удельного сопротивления в СИ [1 Ом*м = 1 Ом*мм 2 /м]

Сопротивление проводника зависит и от его состояния, а именно от температуры.

Эта зависимость выражается формулой или

α – температурный коэффициент сопротивления. Для всех чистых металлов .

При нагревании чистых металлов их сопротивление увеличивается, а при охлаждении – уменьшается.

Закон Ома для участка цепи.

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводник, обладающий электрическим сопротивлением, называется резистором.

Проводники, подчиняющиеся закону Ома, называются линейными.

Графическая зависимость силы тока I от напряжения U называется вольт-амперная характеристика (сокращенно ВАХ). Она изображается прямой линией, проходящей через начало координат.

По вольт-амперной характеристике проводника можно судить о его сопротивлении: чем больше угол наклона графика к оси напряжения, тем меньше сопротивление проводника.

Источник