Меню

Погрешность трансформаторов тока для схем рза должна быть

Погрешности измерительных высоковольтных трансформаторов

Чтобы обеспечить высокие показатели точности во время измерений, у трансформаторов тока (или напряжения) не должен меняться коэффициент трансформации. Они обязаны обладать неизменной величиной угла между векторами тока (напряжения). Но как показывает практика, при проведении измерений всё же возникают погрешности измерительных трансформаторов.

Область применения

Высоковольтные измерительные трансформаторы используют в тех случаях, когда необходимо осуществить передачу сигнала измерительной информации измерительным приборам или устройствам защиты и управления в цепях. С их помощью можно измерить уровень напряжения с очень высокой точностью. Данные устройства, в свою очередь, классифицируются на трансформаторы:

  • напряжения;
  • тока.

Они предназначаются для уменьшения исходного напряжения и тока до такого значение, при котором можно будет подключить измерительные приборы, автоматические устройства и реле защиты. Использование данных устройств позволяет обезопасить работу персонала. Связано это с тем, что цепи высокого и низкого напряжения разделены. Также измерительные трансформаторы увеличивают пороги замеров приборов, тем самым позволяя измерять более высокие значения напряжения и тока при помощи довольно несложных (конструктивно) приборов. Ещё они обеспечивают надёжную защиту электроустановок в аварийных режимах.

Виды погрешности

  • Относительная погрешность коэффициента трансформации;
  • угловая погрешность.

Стоит помнить, что с ростом нагрузки увеличивается и величина самой погрешности. В связи с этим не рекомендовано перегружать трансформаторы больше номинальной мощности, которая указана в паспортных данных.

Для того чтобы определить правильное количество витков, нужна проверка коэффициента трансформации на всех ответвлениях обмоток, а также фаз. Производится она при помощи измерения напряжений либо токов — в зависимости от вида трансформатора — в обоих обмотках (первичной и вторичной). Данный показатель позволит понять, правильно ли подсоединена обмотка к самому переключателю. Также такую проверку необходимо производить и при первом включении трансформатора.

Коэффициент трансформации не должен превышать двух процентов относительно значения, которое получено на аналогичном ответвлении, но уже на другой фазе. Кроме того, он должен соответствовать паспортным данным, которые указал завод – изготовитель.

Угловая же погрешность трансформаторов оказывает воздействие только лишь на данные, полученные при помощи самих приборов (ваттметры, фазометры и счётчики энергии), у которых отклонение подвижной части напрямую связано со смещением фаз между токами в их цепях. В зависимости от допускаемой величины погрешности, измерительные трансформаторы подразделяют на классы точности.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания изоляции силовых трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытание изоляции силовых трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Читайте также:  Расшифровка формулы мощности тока

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник

Трансформаторы тока в переходных режимах

Измерительные трансформаторы являются неотъемлемой частью любой энергоустановки. С помощью измерительных трансформаторов осуществляется учет электроэнергии, измерения параметров сети, они являются первичными источниками сигнала для релейных защит, устройств телемеханики и автоматики. Мы уже затрагивали тему выбора трансформаторов тока в целях учета электрической энергии, сегодня уделим внимание общим принципам их классификации и конструкции, а также нормативно-технической базе в части обеспечения функционала релейных защит.

В первую очередь нужно отметить, что важным аспектом работы современных микропроцессорных релейных защит является их быстродействие, которое должно обеспечиваться не только собственными возможностями программно-технических комплексов устройств РЗА, но и возможностями первичных аналоговых преобразователей, таких как трансформаторы тока.

Токовые цепи релейных защит, как правило, питаются таким же образом, как приборы учета и устройства измерения — источником аналогового сигнала для них являются трансформаторы тока. Отличие состоит в условиях работы: измерительные приборы работают в классе точности при фактическом первичном токе, не превышающем номинального, тогда как устройства релейной защиты рассчитаны на работу в режимах короткого замыкания или перегрузки, когда фактический ток значительно превышает номинальный ток трансформатора. К тому же, такие режимы являются переходными — в составе первичного тока появляются свободные апериодические составляющие.

Как известно, работа трансформатора тока характеризуется уравнением намагничивающих сил: I1 • w1 + I2 • w2 = Iнам • w1

I1 ток в первичной обмотке;
w1количество витков первичной обмотки;
I2 ток во вторичной обмотке;
w2 количество витков вторичной обмотки;
Iнам ток намагничивания.

Из приведенного выражения видно, что первичный ток трансформируется во вторичную обмотку не полностью — часть его уходит на формирование тока намагничивания, создающего рабочий магнитный поток в сердечнике ТТ (поток, формирующий ЭДС во вторичной обмотке, под воздествием которой там и протекает ток). Это происходит как в установившихся, так и в переходных режимах. В переходном процессе каждая составляющая, протекая по первичной обмотке трансформатора тока, делится на две части: одна трансформируется во вторичную обмотку, а вторая идет на намагничивание сердечника. В связи с тем, что скорость изменения апериодической составляющей гораздо меньше скорости изменения переменной составляющей, а периодическая составляющая плохо трансформируется во вторичную цепь и большая ее часть идет на насыщение сердечника. Это, в свою очередь, ухудшает трансформацию периодической составляющей во вторичную цепь и также повышает долю этого тока в токе намагничивания. Возникает так называемое, «подмагничивающее действие». Учитывая, что в сердечниках ТТ во многих случаях имеет место остаточная магнитная индукция, которая сохраняется в течение длительного времени (дни, недели и даже месяцы), наихудший режим работы возникает в случае, если остаточный магнитный поток в сердечнике совпадает по направлению с магнитным потоком, создаваемым апериодической составляющей тока намагничивания.

Читайте также:  Нервные окончания высокочастотным током

В результате трансформатор начинает работать в режиме насыщения, т.е. когда ток намагничивания растет значительно быстрее рабочего магнитного потока.

Все вышеописанное вносит искажения в величину и фазу вторичного тока, создавая тем самым погрешность (именно величина тока намагничивания определяет точность работы ТТ). И, несмотря на то, что в релейных защитах точность траснформации имеет гораздо меньшее значение, чем в измерительной технике, погрешности могут быть настолько велики, что могут вызвать существенную задержку срабатывания устройств РЗА, а также их ложное действие или отказ. Это особенно актуально для дифференциальных защит, т.к. вместе с токами намагничивания ТТ возрастают и токи небаланса в схеме защиты. Также ситуацию может ухудшить применение промежуточных быстронасыщающихся трансформаторов тока.

Существует несколько способов борьбы с остаточной намагниченностью сердечника, как с одной из основных причин возникновения насыщения. Один из методов — применение трансформаторов тока с сердечниками без стали, обладающих линейными свойствами. Но использование таких трансформаторов тока может быть весьма ограниченным, в связи с небольшой мощностью вторичных обмоток. Второй метод (наиболее распостраненный) — изготовление сердечников из электротехнической стали, имеющих немагнитные зазоры. Этот метод по сравнению с использованием сердечников без стали позволяет конструировать сердечники меньшего сечения. Однако в России трансформаторы тока с такими сердечниками не выпускались и не выпускаются. Нужно отметить, что европейские производители успешно производят такие изделия в вполне приемлемых габаритах, размещая в корпусе трансформатора как обмотки с привычными нам классами точности, так и специализированные обмотки для работы РЗА в переходных процессах. Почему же сложилась такая ситуация? Наверное, отнюдь не потому, что российские конструкторы гораздо хуже европейских знают свое дело и не потому, что эксплуатирующие организации не желают располагать таким оборудованием.

Рассмотрим действующую нормативную базу, регламентирующую производство трансформаторов тока. Действующий сегодня ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» включает в себя два класса точности релейных защит — 5Р и 10Р (пределы допускаемых погрешностей — см. Таблицу 1). Ни в одном из этих классов не нормируется работа ТТ в переходных режимах — указанные в ГОСТ погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).

Таблица 1. Пределы допускаемых погрешностей вторичных обмоток для защиты в установившемся режиме при номинальной вторичной нагрузке

Источник



Измерительные трансформаторы тока в схемах релейной защиты и автоматики

Энергетическое оборудование электрических подстанций организационно разделяется на два вида устройств:

1. силовые цепи, по которым передается вся мощность транспортируемой энергии;

2. вторичные устройства, позволяющие контролировать происходящие процессы в первичной схеме и управлять ими.

Силовое оборудование располагают на открытых площадках или закрытых распределительных устройствах, а вторичное — на релейных панелях, внутри специальных шкафов или отдельных ячеек.

Промежуточным звеном, выполняющим функцию передачи информации между силовой частью и органами измерения, контроля, защит и управления являются измерительные трансформаторы. Они, как и все подобные устройства, имеют две стороны с разным значением напряжения:

1. высоковольтную, которая соответствует параметрам первичной схемы;

2. низковольтную, позволяющую снизить опасность воздействия силового оборудования на обслуживающий персонал и материальные затраты на создание устройств управления и контроля.

Прилагательное «измерительные» отображает назначение этих электротехнических устройств, поскольку они очень точно моделируют все процессы, происходящие на силовом оборудовании, и разделяются на трансформаторы:

2. напряжения (ТН).

Они работают по общим физическим принципам трансформации, но обладают различным конструктивным исполнением и способами включения в первичную схему.

Как сделаны и работают трансформаторы тока

Принципы работы и устройства

В конструкцию измерительного трансформатора тока заложено преобразование векторных величин токов больших значений, протекающих по первичной схеме, в пропорционально уменьшенные по величине и точно так же направленные вектора во вторичных цепях.

Принцип работы измерительного трансформатора тока

Конструктивно трансформаторы тока, как и любой другой трансформатор, состоит из двух изолированных обмоток, расположенных вокруг общего магнитопровода. Он изготавливается шихтованными металлическими пластинами, для плавки которых используются специальные сорта электротехнических сталей. Это делается для того, чтобы снизить магнитное сопротивление на пути прохождения магнитных потоков, циркулирующих по замкнутому контуру вокруг обмоток и уменьшить потери на вихревые токи.

Трансформатор тока для схем релейных защит и автоматики может иметь не один магнитопровод, а два, отличающиеся количеством пластин и общим объемом используемого железа. Это делается для создания двух типов обмоток, которые могут надежно работать при:

1. номинальных условиях эксплуатации;

2. или при значительных перегрузках, вызванных токами коротких замыканий.

Первые конструкции используются для выполнения измерений, а вторые применяются для подключения защит, отключающих возникающие ненормальные режимы.

Устройство обмоток и клемм подключения

Обмотки трансформаторов тока, рассчитанные и изготовленные на постоянную работу в схеме электроустановки, отвечают требованиям безопасного прохождения тока и его теплового воздействия. Поэтому они выполняются из меди, стали или алюминия с площадью поперечного сечения, исключающей повышенный нагрев.

Поскольку первичный ток всегда больше вторичного, то обмотка для него значительно выделяется своими габаритами, как показано на картинке ниже для правого трансформатора.

Измерительные трансформаторы тока до 1000 В

На левой и средней конструкции силовой обмотки вообще нет. Вместо нее предусмотрено отверстие в корпусе, через которое пропускается питающий силовой электрический провод или стационарная шина. Такие модели используются, как правило, в электроустановках до 1000 вольт.

На выводах обмоток трансформаторов всегда предусмотрено стационарное крепление для подключения шин и соединительных проводов с помощью болтов и винтовых зажимов. Это одно из ответственных мест, где может быть нарушен электрический контакт, который способен привести к поломкам или нарушениям точной работы измерительной системы. Качеству его затяжки в первичной и вторичной схеме всегда обращается внимание при эксплуатационных проверках.

Клеммы трансформаторов тока маркируются на заводе во время изготовления и обозначаются:

Л1 и Л2 для входа и выхода первичного тока;

И1 и И2 — вторичного.

Эти индексы означают направление навивки витков относительно друг друга и влияют на правильность подключения силовых и моделируемых цепей, характеристику распределения векторов токов по схеме. На них обращают внимание при первичном монтаже трансформаторов или заменах неисправных устройств и даже исследуют различными методиками электрических проверок как до сборок устройств, так и после монтажа.

Количество витков в первичной W1 и вторичной W2 схеме не одинаково, а сильно отличается. Высоковольтные трансформаторы тока обычно имеют всего одну прямую шину, пропущенную сквозь магнитопровод, которая работает в качестве силовой обмотки. Вторичная же катушка имеет большее количество витков, которое влияет на коэффициент трансформации. Его для удобства эксплуатации записывают дробным выражением номинальных величин токов в обеих обмотках.

Читайте также:  Векторы тока в сопротивлении

Например, запись 600/5 на шильдике корпуса означает, что трансформатор предназначен для включения в цепь высоковольтного оборудования с номинальным током 600 ампер, а во вторичной схеме будет трансформироваться только 5.

Каждый измерительный трансформатор тока включается в свою фазу первичной сети. Количество же вторичных обмоток для устройств релейной защиты и автоматики обычно увеличивается для раздельного использования в кернах токовых цепей для:

защит шин и ошиновок.

Такой способ позволяет исключить влияние менее ответственных цепочек на более значимые, упростить их обслуживание и проверки на действующем оборудовании, находящемся под рабочим напряжением.

С целью маркировки выводов таких вторичных обмоток применяют обозначение 1И1, 1И2, 1И3 для начал и 2И1, 2И2, 2И3 — концов.

Каждая модель трансформатора тока рассчитана для работы с определенной величиной высоковольтного напряжения на первичной обмотке. Слой изоляции, расположенный между обмотками и корпусом, должен длительно выдерживать потенциал силовой сети своего класса.

С внешней стороны изоляции высоковольтных трансформаторов тока в зависимости от назначения может применяться:

загустевшие эпоксидные смолы;

некоторые виды пластмасс.

Эти же материалы могут быть дополнены трансформаторной бумагой или маслом для изоляции внутренних пересечений проводов на обмотках и исключения межвитковых замыканий.

Класс точности ТТ

Идеально трансформатор теоретически должен работать точно, без внесения погрешностей. Однако, в реальных конструкциях происходят потери энергии на внутренний нагрев проводов, преодоление магнитного сопротивления, образование вихревых токов.

За счет этого хоть немного, но нарушается процесс трансформации, что сказывается на точности воспроизводства в масштабе первичных векторов тока их вторичными величинами с отклонениями ориентации в пространстве. Все трансформаторы тока имеют определенную погрешность измерения, которая нормируется процентным выражением отношения абсолютной погрешности к номинальному значению по амплитуде и углу.

Векторная диаграмма определения погрешностей трансформатора тока

Класс точности трансформаторов тока выражается числовыми значениями «0,2», «0,5», «1», «3», «5»,»10».

Трансформаторы с классом 0,2 работают для выполнения особо важных лабораторных замеров. Класс 0,5 предназначен для точных измерений токов, используемых приборами расчетных учетов 1-го уровня в коммерческих целях.

Измерения тока для работы реле и контрольных учетов 2-го уровня производится классом 1. К трансформаторам тока 10-го класса точности подключаются катушки отключения приводов. Они точно работают в режиме коротких замыканий первичной сети.

Схемы включения ТТ

В энергетике в основном применяются трех или черырехпроводные линии электропередач. Для контроля токов, проходящих по ним, используются разные схемы подключения измерительных трансформаторов.

1. Силовое оборудование

На фотографии показан вариант измерения токов трехпроводной силовой цепи 10 киловольт с помощью двух трансформаторов тока.

Измерительные трансформаторы тока в сети 10 кВ

Здесь видно, что шины присоединения первичных фаз А и С подключены болтовым соединением к выводам трансформаторов тока, а вторичные цепи спрятаны за ограждение и выведены отдельным жгутом проводов в защитной трубе, которая направляется в релейный отсек для подключения цепей на клеммники.

Этот же принцип монтажа применяется и в других схемах высоковольтного оборудования, как показано на фотографии для сети 110 кВ.

Измерительные трансформаторы тока в сети 110 кВ

Здесь корпуса измерительных трансформаторов смонтированы на высоте с помощью заземленной железобетонной платформы, что требуют правила безопасности. Подключение первичных обмоток к силовым проводам выполнено в рассечку, а все вторичные цепи выведены в рядом расположенный ящик с клеммной сборкой.

Кабельные соединения вторичных токовых цепей защищены от случайного внешнего механического воздействия металлическими чехлами и бетонными плитами.

2. Вторичные обмотки

Как уже отмечено выше, выходные керны трансформаторов тока собираются для работы с измерительными приборами или защитными устройствами. Это влияет на сборку схемы.

Если необходимо контролировать по амперметрам ток нагрузки в каждой фазе, то используется классический вариант подключения — схема полной звезды.

Схема включения измерительных трансформаторов тока в полную звезду

В этом случае каждый прибор показывает величину тока своей фазы с учетом угла между ними. Использование автоматических самописцев в этом режиме наиболее удобно позволяет отображать вид синусоид и строить по ним векторные диаграммы распределения нагрузок.

Часто на отходящих фидерах 6÷10 кВ в целях экономии устанавливают не три, а два измерительных трансформатора тока без задействования одной фазы В. Этот случай показан на расположенном выше фото. Он позволяет включить амперметры по схеме неполной звезды.

Схема включения трансформаторов тока в неполную звезду

За счет перераспределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети.

Случай включения двух измерительных трансформаторов тока для контроля линейного тока с помощью реле показан на картинке ниже.

Схема включения трансформаторво тока в неполную звезду

Схема полностью позволяет контролировать симметричную нагрузку и трехфазные короткие замыкания. При возникновении двухфазных КЗ, особенно АВ или ВС, чувствительность такого фильтра сильно занижена.

Распространенная схема контроля токов нулевой последовательности создается подключением измерительных трансформаторов тока в схему полной звезды, а обмотки контрольного реле к объединенному проводу нуля.

Схема включения трансформаторов тока в полную звезду

Ток, проходящий через обмотку создан сложением всех трех векторов фаз. При симметричном режиме он сбалансирован, а во время возникновения однофазных или двухфазных КЗ происходит выделение в реле составляющей дисбаланс величины.

Особенности эксплуатации измерительных трансформаторов тока и их вторичных цепей

При работе трансформатора тока создается баланс магнитных потоков, образованных токами в первичной и вторичной обмотке. В результате они уравновешены по величине, направлены встречно и компенсируют влияние созданных ЭДС в замкнутых цепях.

Если первичную обмотку разомкнуть, то по ней ток перестанет протекать и все вторичные схемы будут просто обесточены. А вот вторичную цепь при прохождении тока по первичной размыкать нельзя, иначе под действием магнитного потока во вторичной обмотке вырабатывается электродвижущая сила, которая не тратится на протекание тока в замкнутом контуре с малым сопротивлением, а используется в режиме холостого хода.

Это приводит к появлению на разомкнутых контактах высокого потенциала, который достигает несколько киловольт и способен пробить изоляцию вторичных цепей, нарушить работоспособность оборудования, нанести электрические травмы обслуживающему персоналу.

По этой причине все переключения во вторичных цепях трансформаторов тока производят по строго определенной технологии и всегда под надзором контролирующих лиц без разрыва токовых цепей. Для этого используют:

специальные виды клеммников, позволяющие устанавливать дополнительную закоротку на время разрыва выводимого из работы участка;

испытательные токовые блоки с закорачивающими перемычками;

специальные конструкции переключателей.

Регистраторы аварийных процессов

Измерительные приборы делят по виду фиксации параметров при:

номинальном режиме эксплуатации;

возникновении сверхтоков в системе.

Чувствительные элементы регистраторов прямо пропорционально воспринимают поступающий на них сигнал и также отображают его. Если величина тока поступила на их вход с искажением, то эта погрешность будет введена в показания.

По этой причине приборы, предназначенные для измерения аварийных токов, а не номинальных, подключают в керны защит трансформаторов тока, а не измерений.

Об устройстве и принципах работы измерительных трансформаторов напряжения читайте здесь: Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Источник