Меню

Почему в капиллярах наблюдается наименьшая скорость тока крови капилляры максимально

Почему в капиллярах наблюдается наименьшая скорость тока крови капилляры максимально

Кровеносные капилляры являются самыми тонкими и многочисленными сосудами. Они располагаются в межклеточных пространствах. Просвет капилляров варьирует от 4,5 до 30 мкм и более, что обусловлено органными особенностями строения сосудистой системы. Общее число капилляров в различных тканях не одинаково. В органах с высоким уровнем метаболизма число капилляров на 1 мм поперечного сечения больше, чем в органах с менее интенсивным обменом. Например, сердечная мышца содержит вдвое больше капилляров, чем скелетная, в сером веществе головного мозга капиллярная сеть значительно гуще, чем в белом. Длина отдельного капилляра колеблется от 0,5 до 1,1 мм.

Количество всех капилляров организма чрезвычайно велико. Например, у человека оно составляет около 40 млрд., общая длина капилляров достигает 100 000 км. Этой величины достаточно, чтобы два с половиной раза опоясать земной шар по экватору. Также велика и общая площадь их поверхности; она составляет примерно 1500 м 2 .

В местах отхождения капилляров от артериол гладкомышечные клетки образуют прекапиллярные сфинктеры. От степени их сокращения зависит какая

Рис. 9.34 Показатели гемодинамики в различных отделах сосудистого русла

А — распределение крови, Б — уровень кровяного давления, суммарный просвет сосудов и линейная скорость кровотока. а — сердце, б, в — резистивные сосуды (б — артерии, в — артериолы), г — капилляры, д, е — емкостные сосуды (д — венулы, е — вены).

часть крови будете проходить через капилляры. В остальных участках капилляров сократительные элементы полностью отсутствуют. Стенка капилляров представляет собой полупроницаемую мембрану, тесно связанную функционально и морфологически с окружающей соединительной тканью. Она состоит из двух оболочек: внутренней — эндотелиальной, наружной — базальной. Различают три типа капилляров: соматический, висцеральный и синусоидный.

Стенка капилляров соматического типа характеризуется непрерывностью эндотелиальной и базальной оболочек. Она малопроницаема для крупных молекул белка, но легко пропускает воду и растворенные в ней минеральные вещества. Капилляры такого рода располагаются преимущественно в коже, скелетной и гладкой мускулатуре, в головном мозгу, что соответствует характеру метаболических процессов этих органов и тканей.

В стенках капилляров висцерального типа имеются окна (фенестры). Такие капилляры характерны для органов, которые секретируют и всасывают большие количества воды и растворенных в ней веществ или участвуют в быстром транспорте макромолекул (почки, пищеварительный канал, эндокринные железы).

У капилляров синусоидного типа, характеризующихся большим просветом, эндотелиальная оболочка прерывиста, базальная мембрана частично отсутствует. Местом локализации таких капилляров являются костный мозг, печень, селезенка. Через их стенки легко проникают макромолекулы и форменные элементы крови.

Функция капилляров заключается в снабжении клеток питательными и пластическими веществами и удалении продуктов метаболизма, т. е. в обеспечении транскапиллярного обмена. Для осуществления этих процессов необходим ряд условий, важнейшими из которых являются скорость кровотока в капилляре, величина гидростатического и онкотического давления, проницаемость стенки капилляра, число перфузируемых капилляров на единицу массы ткани.

Кровяное давление в капиллярах зависит от сопротивления в разветвляющемся артериальном русле (рис. 9.34). Оно продолжает падать и на протяжении самих капилляров. Например, в артериальной части капилляра кожи кровяное давление составляет в среднем 30 мм рт. ст., а в венулярном — 10. Средняя линейная скорость капиллярного кровотока у млекопитающих достигает 0,5—1 мм/с. Следовательно, время контакта каждого эритроцита со стенкой капилляра длиной 100 мкм не превышает 0,15 с. Интенсивность эритроцитарного потока

Рис. 9.35 Обмен веществ в пределах микроциркуляторного русла

1 — ткани, 2 — артерио—венозный анастомоз, 3 — венула, 4 — артериола, 5 — капилляры; цифрами показано изменение соотношений гидростатического (числитель) и онкотического (знаменатель) давлений (мм рт. ст.).

Рис. 9.36 Тургорный механизм расширения капилляров

А— эндотелий капилляра в расслабленной мышце; Б— эндотелий капилляра в сокращенной мышце .1— продукты метаболизма, 2 — эндотелий капилляров, 3—просвет капилляров, 4 — межклеточное мышечные волокна.

в капиллярах колеблется от 12 до 25 и более клеток в 1 с. Таким образом, каждая клетка крови находится в капилляре около 1 с. Скорость капиллярного кровотока зависит от просвета сосуда, области тела и реологических свойств крови.

Движение жидкости через капиллярную стенку происходит в результате разности гидростатического давления крови и гидростатического давления окружающей ткани (рис. 9.35, 9.36), а также под действием разности онкотического давления крови и межклеточной жидкости. Процесс фильтрации из капилляров в межклеточную жидкость осуществляется под давлением 7 мм рт. ст., а обратный ток в просвет капилляра — 8 мм рт. ст.

В нормальных условиях скорость фильтрации жидкости практически равна скорости ее реабсорбции. Только небольшая часть межклеточной жидкости поступает, минуя кровеносные капилляры, в лимфатические капилляры и оттуда в виде лимфы снова возвращается в кровяное русло. Средняя скорость фильтрации во всех капиллярах организма человека составляет примерно 14 мл/мин, т. е. 20 л/сут. Обратный процесс, или реабсорбция, составляет около 12,5 мл/мин, или 18 л/сут; по лимфатическим сосудам оттекает 2 л/сут.

Изменение любого параметра равновесия приводит к изменению остальных параметров. Например, увеличение капиллярного гидростатического давления сопровождается усилением фильтрации воды из капилляра, в результате в тканевых пространствах повышается гидростатическое и снижается онкотическое давление. Одновременно с этим возрастает онкотическое давление белков плазмы крови, вызывающее, в свою очередь, усиление абсорбции в венозном конце капилляра. Следовательно, усиление фильтрации сопровождается соответствующим повышением абсорбции жидкости в капилляре.

Процессу фильтрации через стенку капилляра способствует и поршневой механизм прохождения через капилляр эритроцита. Вследствие закупорки артериального конца капилляра возникает небольшое снижение давления в его

Рис. 9.37 Возможные пути перехода крови из артериолы в венулу

венозной части. После прохождения эритроцита давление в этом отрезке восстанавливается. Эритроцит при этом играет роль поршня. Процессу фильтрации также способствует конвекция межклеточной жидкости.

По ходу капилляров и окружающей их соединительной ткани находятся чувствительные нервные окончания. Значительное место среди них занимают хеморецепторы, сигнализирующие о состоянии метаболических процессов. Эффекторные нервные окончания непосредственно у стенок капилляров в большинстве органов не обнаруживаются.

Регуляция капиллярного кровотока осуществляется нервными и гуморальными механизмами, которые обеспечивают оптимальный кровоток в этих сосудах для транскапиллярного обмена между кровью и тканями. Различают три уровня регуляции капиллярного кровотока: общесистемную регуляцию, местную (в пределах органа) и саморегуляцию (в пределах капиллярной единицы).

Основным механизмом нервной регуляции капилляров является их эфферентная иннервация бессинаптического типа. Она осуществляется благодаря свободной диффузии медиаторов по направлению к стенкам капилляров. Ведущая роль в местной регуляции капиллярного кровотока принадлежит физиологически активным веществам. В частности, гистамин и кинины — одни из самых активных вазодилататоров; серотонин, ангиотензин II — констрикторы некоторых сосудов. Вазоактивным действием обладают гормон задней доли гипофиза (нейрогипофиза) — вазопрессин, а также простагландины.

Капилляры могут образовать либо прямой кратчайший путь между артериолами и венулами, либо формировать капиллярные сети (рис. 9.37). В таком случае капилляры отходят от артериального конца магистрального сосуда и впадают в него в его венозной части. Такая анатомическая архитектура имеет важное значение в распределении крови в капиллярных сетях.

Для терминального артериального русла характерно также наличие сосудов, несущих артериальную и венозную кровь в обход капиллярного русла — артериоло—венулярные (артерио—венозные) анастомозы (рис. 9.37, 9.38). Они существуют почти во всех органах и влияют на скорость и объем кровотока в капиллярах. Артериоло—венулярные анастомозы участвуют в терморегуляции, регуляции тока крови через орган, стимуляции венозного кровотока.

Рис. 9.38 Капилляры мышцы: строение микроциркуляторного русла АВА — артерио—венозный анастомоз.

Рис. 9.39 Скорость кровотока и величина давления в разных областях кровяного русла

А — линейная скорость кровотока в сосудах каждого отдела кровяного русла обратно пропорциональна площади поверхности поперечного сечения этого отдела. наиболее высока эта скорость в магистральных артериях и венах и наиболее низка — в капиллярах; напротив, суммарная площадь поверхностей поперечного сечения наибольшая для капилляров и наименьшая — Для крупных артерий и вен. Б — среднее давление в различных отделах кровеносной системы. Наибольшее падение давления происходит в области артериол.

Источник

Капиллярная сеть

Капиллярная сеть

Капиллярная сеть

Благодаря сети мельчайших кровеносных сосудов каждая клетка организма получает необходимые ей кислород и питательные вещества.

Капилляры – мельчайшие кровеносные сосуды, пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.

Читайте также:  Зачем нужны кристаллы в тока ворлд

Артериолы и венулы

Капилляры – самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7–8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, – это артериолы, а выносящие кровь мелкие вены – венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию – удерживают имеющуюся в органе кровь.

Шунты

Есть сосуды, напрямую связывающие артериолы и венулы, – артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.

Микроциркуляция

Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды – микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения – в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000–9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).

Строение капилляра

Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное – из тканей в кровь – поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра – не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.

История изучения капиллярной сети

Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.

Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.

Особенности строения микроциркуляторного русла

Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах – диаметр их составляет 4,5–6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки – 7–11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20–30 мкм.

Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки – около 2500–3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах – около 1400, а в коже всего 40 капилляров.

В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15–17 годам).

Функциональные характеристики капиллярной сети

Общая емкость капиллярного русла составляет 25–30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20–35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При физических нагрузках в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах – необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.

Особенности кровотока в капиллярах

Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80–130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.

При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25–50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.

Регулирование микроциркуляции крови

Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10–100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови – кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей – крупные артериолы и венулы.

Диагностика расстройств микроциркуляции крови

Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.

Читайте также:  220 это между нами ток

Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств – стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями – выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.

Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.

Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН

Источник

Капилляры

О микроциркуляции и капиллярах чаще всего говорят косметологи. Поэтому отношение к этому процессу в целом не очень серьезное, а взгляд на него поверхностный. И совершенно зря.

Без преувеличения: по меньшей мере, одна из тайн жизни скрыта в мелких сосудах, а главным образом – в капиллярах. Если их развернуть, получится лента шириной в метр и длиной шесть километров. Между капилляром и тканью того или иного органа непрерывно происходит обмен веществ, это во многом и определяет наше самочувствие и состояние здоровья.

РЕКИ И РУЧЬИ

От крупных кровеносных сосудов (артерий и вен) ответвляются мелкие, а от них, в свою очередь, капилляры. В отличие от всех остальных сосудов, их стенки состоят лишь из одного слоя клеток. Их диаметр впритык подогнан природой под диаметр клеток крови, чтобы не пропало ни одной молекулы кислорода.

ВТОРОЕ ДЫХАНИЕ

Реальный возраст человека можно определить по состоянию его сосудов. Как известно, едва ли не всеми функциями в организме, в том числе мыслительными, управляет кровоснабжение. Сеть капилляров оплетает все органы и заставляет их в нужный момент активизироваться. Когда улучшается кровоснабжение в определенных зонах, органы начинают лучше работать, а мы – лучше видеть, слышать, чувствовать и т. д.

Как только возникает потребность в такой предельной активности, капилляры в нужных местах раскрываются, и микроциркуляция улучшается. В более спокойные времена часть капилляров может позволить себе закрыться, пока не потребуется «второе дыхание». До тех пор, пока исправно работает эта система, человек молод и полон энергии.

ЖИЗНЬ И СМЕРТЬ КАПИЛЛЯРА

Как самые маленькие кровеносные сосуды, капилляры первыми попадают под удар времени. Именно их угасание – причина многих возрастных проблем. В отличие от крупных сосудов, в капиллярах не развивается атеросклероз – в них просто нет места для холестериновой бляшки. Но они могут просто сжиматься, закрываться и, как выключенный кран, перекрывать кровоснабжение органа, который должны питать. Мало того, с возрастом капилляров в принципе становится меньше, они медленнее растут. А поскольку они располагаются сетью, со временем немалая площадь может остаться обескровленной. Часто именно в этом причина непонятной постоянной усталости.

Другая интересная закономерность: с годами капилляров естественным образом становится меньше, но объем крови сохраняется, поэтому артериальное давление неизбежно будет повышаться. Так появляется небольшая гипертония, свойственная многим людям старше 50 лет. И если сердце «разгонять» как раньше (то есть бездумно снижать давление препаратами), это приведет лишь к новым проблемам, например, к ишемии (недостаточному кровоснабжению органов). Поэтому многие специалисты считают, что к слегка повышенному давлению у пожилых стоит относиться спокойно – до разумного предела, конечно.

МИКРОКРУГОВОРОТ

ВАЛЕРИЙ МАМАЕВ, кандидат биологических наук, геронтолог

Где есть капилляры – есть и лимфатические сосуды, которые выводят из организма разрушенные клетки и прочий «мусор». Восточная медицина, медицина долгожителей, не случайно придает огромное значение лимфе и лимфодренажу: именно лимфодренаж определяет скорость микроциркуляции.

«К сожалению, у нас лимфодренажем интересуются только косметологи, – говорит Валерий Мамаев. – Потому что поверхностный эффект лимфодренажа сразу виден: целлюлит постепенно пропадает, кожа оживает. Можно предположить, что оживает и то, что под ней. Мало того, если нет оттока лимфы, межклеточное пространство становится некомфортным для стволовых клеток. В идеале при любой травме или поломке они должны немедленно доставляться на место и восстанавливать повреждение. Но если лимфоток нарушен, этого не происходит». Конечно, одного лимфодренажа недостаточно, чтобы оставаться молодым и здоровым, но это весьма надежный способ сохранить все шесть километров себя.

3 СПОСОБА УЛУЧШИТЬ МИКРОЦИРКУЛЯЦИЮ КРОВИ

* Озонотерапия
С возрастом мембрана эритроцита (клетки крови) становится более жесткой. По замыслу природы, эритроцит должен еле протискиваться в капилляр. Как только он теряет эластичность, становится жестче, он просто «застревает», нарушается кровоснабжение, доступ кислорода прекращается. Озон помогает восстановить эластичность эритроцитов.

* Массаж
Практически любой массаж разгоняет кровь, усиливает отток лимфы. Особое внимание стоит обратить на аппаратную методику LPG. «Ее эффективность доказана научными исследованиями, LPG активирует полторы тысячи генов!» – говорит наш эксперт. Конечно, аппарат раскроет все свои возможности только в руках квалифицированного мастера.

* Капилляротерапия
Так уже много лет называют скипидарные ванны. Их связывают с именем Абрама Залманова, одного из немногих советских врачей, получивших мировое признание. «Открывайте же закупоренные капилляры у каждого, — писал он. — Восстановите проходимость протоков – организм сам довершит остальное». Сегодня старая практика может казаться необычной, но ее эффективность доказана.

Источник

Скорость кровотока

Скорость кровотока - Важность и острота проблемы

Скорость кровотока — это скорость передвижения элементов крови по кровеносному руслу за определенную единицу времени. В практике специалисты выделяют линейную скорость и объемную скорость кровотока.

Один из главных параметров, характеризующий функциональность кровеносной системы организма. Этот показатель зависит от частоты сокращений сердечной мышцы, количества и качественного состава крови, величины сосудов, артериального давления, возраста и генетических особенностей организма.

Типы скорости кровотока

Линейная скорость- расстояние, проходимое частицей крови по сосуду за определенный период времени. Оно напрямую зависит от суммы площадей поперечного сечения сосудов, составляющих данный участок сосудистого русла.

Следовательно, аорта- самый узкий участок кровеносной системы и в ней самая высокая скорость кровотока, достигающая 0,6 м/с. Самым «широким» местом являются капилляры, т. к. их общая площадь в 500 раз больше площади аорты, скорость кровотока в них 0,5 мм/с. , что обеспечивает прекрасный обмен веществ между капиллярной стенкой и тканями.

Объемная скорость кровотока — общее количество крови поступающей через поперечное сечение сосуда за определенный промежуток времени.

Данный вид скорости определяется:

  • разностью давления на противоположных концах сосуда ,которая формируется артериальным и венозным давлением;
  • сопротивлением сосудов току крови, зависящим от диаметра сосуда, его длины, вязкости крови.

Важность и острота проблемы

Определение такого важного параметра , как скорость кровотока крайне важно для исследования гемодинамики конкретного участка сосудистого русла либо определенного органа. При изменении его можно говорить о наличие патологических сужении на протяжении сосуда, препятствий току крови (пристеночные тромбы, атеросклеротические бляшки),повышенной вязкости крови.

В настоящее время неинвазивная, объективная оценка кровотока по сосудам разного калибра является самой актуальной задачей современной ангиологии. От успеха в ее решении зависит успех ранней диагностики таких сосудистых заболеваний, как диабетическая микроангиопатия, синдром Рейно, различных окклюзий и стенозов сосудов.

Перспективный помощник

Самым перспективным и безопасным является определение скорости кровотока УЗ-методом, построенным на эффекте Доплера.

Одним из последних представителей УЗ доплеровских аппаратов является Допплер- аппарат, выпускаемый компанией Минимакс ,зарекомендовавший себя на рынке как надежный, качественный и долгосрочный помощник в определении сосудистой патологии.

Как происходит измерение скорости кровотока в сосудах?

Измерение скорости кровотока в сосудах производится с применением различных методик. Одной из самых точных и достоверных результатов даёт измерение, произведённое с помощью метода ультразвуковой доплеровской флоуметрии аппаратом Минимакс-Допплер. Данные, полученные при использовании оборудования Минимакс, являются основой для оценки состояния обследуемого и учитывается при определении диагноза.

Для чего проводят измерение скорости движения крови?

Измерение скорости кровотока имеет важно для диагностической медицины. Благодаря анализу данных, полученных в результате измерений можно определить:

  • состояние сосудов, показатель вязкости крови;
  • уровень снабжения кровью мозга и других органов;
  • сопротивление движению в обоих кругах кровообращения;
  • уровень микроциркуляции;
  • состояние коронарных сосудов;
  • степень сердечной недостаточности.
Читайте также:  Что происходит с ионами под действием электрического тока

Скорость кровотока в сосудах, артериях и капиллярах не является постоянной и одинаковой величиной: самая большая скорость — в аорте, самая маленькая — внутри микрокапилляров.

Для чего проводят измерение скорости кровотока в сосудах ногтевого ложа?

Скорость кровотока в сосудах ногтевого ложа — один из наглядных показателей качества микроциркуляции крови в организме человека. Сосуды ногтевого ложа имеют малое поперечное сечение и состоят не только из капилляров, а также из микроскопических артериол.

При проблемах, связанных с кровеносной системой, эти капилляры и артериолы страдают первыми. Конечно, судить о состоянии всей системы только лишь на основании исследования кровообращения в области ногтевого ложа нельзя, но стоит обратить внимание, если движение крови в этой области является слишком низким или высоким.

В медицине для получения наиболее достоверных сведений проводят измерения параметров кровообращения на больших участках кровообращения.

Источник



masterok

Мастерок.жж.рф

Хочу все знать

С какой скоростью течет кровь в человеке? masterok October 26th, 2018

Скорость циркуляции крови в организме не всегда одинакова. Движение кровотока по сосудистому руслу изучает гемодинамика.

Кровь движется быстро в артериях (в наиболее крупных — со скоростью около 500 мм/сек), несколько медленнее — в венах (в крупных венах — со скоростью около 150 мм/сек) и совсем медленно в капиллярах (менее 1 мм/сек). Различия в скорости зависят от суммарного поперечного сечения сосудов. Когда кровь течет через последовательный ряд сосудов разного диаметра, соединенных своими концами, скорость ее движения всегда обратно пропорциональна площади поперечного сечения сосуда в данном участке.

Кровеносная система построена таким образом, что одна крупная артерия (аорта) разветвляется на большое число артерий средней величины, которые в свою очередь ветвятся на тысячи мелких артерий (так называемых артериол), распадающихся затем на множество капилляров. Каждая из ветвей, отходящих от аорты, уже самой аорты, но этих ветвей так много, что суммарное поперечное сечение их больше сечения аорты, а поэтому скорость течения крови в них соответственно ниже. По приблизительной оценке, общая площадь поперечного сечения всех капилляров тела примерно в 800 раз больше площади сечения аорты. Следовательно, скорость течения в капиллярах примерно в 800 раз меньше, чем в аорте. На другом конце капиллярной сети капилляры сливаются в мелкие вены (венулы), которые соединяются между собой, образуя все более и более крупные вены. При этом суммарная площадь поперечного сечения постепенно уменьшается, а скорость тока крови возрастает.

В ходе исследований выявлено, что данный процесс является непрерывным в организме человека вследствие разницы давления в сосудах. Прослеживается течение жидкости от участка, где оно высокое, к участку с более низким. Соответственно, имеются места, отличающиеся наименьшей и наибольшей скоростью течения.

Отличают объемную и линейную скорость крови. Под объемной скоростью понимают то количество крови, которое проходит через поперечное сечение сосуда за единицу времени. Объемная скорость во всех участках кровеносной системы одинакова. Линейная же скорость измеряется тем расстоянием, которое проходит частица крови за единицу времени (в секунду). Линейная скорость разная в различных отделах сосудистой системы.

Объемная скорость

Важным показателем гемодинамических значений является определение объемной скорости кровотока (ОСК). Это количественный показатель жидкости, циркулирующей за определенный временной отрезок сквозь поперечное сечение вен, артерий, капилляров. ОСК напрямую связана с имеющимся в сосудах давлением и сопротивлением, оказываемым их стенками. Минутный объем движения жидкости по кровеносной системе вычисляется по формуле, учитывающей эти два показателя. Однако это не свидетельствует об одинаковом объеме крови во всех ответвлениях кровеносного русла на протяжении минуты. Количество зависит от диаметра определенного участка сосудов, что никак не влияет на снабжение кровью органов, так как общее количество жидкости остается одинаковым.

Методы измерения

Определение объемной скорости не так давно еще проводилось так называемыми кровяными часами Людвига. Более эффективный метод – применение реовазографии. В основу способа положено отслеживание электрических импульсов, связанных с сопротивлением сосудов, проявляющемся в качестве реакции на воздействие тока с высокой частотностью.

При этом отмечается следующая закономерность: увеличение кровенаполнения в определенном сосуде сопровождается снижением его сопротивляемости, при уменьшении давления сопротивление, соответственно, увеличивается. Эти исследования обладают высокой диагностической ценностью для выявления заболеваний, связанных с сосудами. Для этого выполняется реовазография верхних и нижних конечностей, грудной клетки и таких органов, как почки и печень. Другой достаточно точный метод – плетизмография. Он представляет собой отслеживание изменений в объеме определенного органа, появляющихся в результате наполнения его кровью. Для регистрации этих колебаний используются разновидности плетизмографов – электрические, воздушные, водные.

Флоуметрия

Этот метод исследования движения кровотока основан на использовании физических принципов. Флоуметр прикладывается к обследуемому участку артерии, что позволяет осуществлять контроль над скоростью кровотока при помощи электромагнитной индукции. Специальный датчик фиксирует показания.

Индикаторный метод

Использование этого способа измерения СК предусматривает введение в исследуемую артерию или орган вещества (индикатора), не вступающего во взаимодействие с кровью и тканями. Затем через одинаковые временные отрезки (на протяжении 60 секунд) в венозной крови определяется концентрация введенного вещества. Эти значения используются для построения кривой линии и расчета объема циркулирующей крови. Данный метод широко применяется с целью выявления патологических состояний сердечной мышцы, мозга и других органов.

Линейная скорость

Показатель позволяет узнать скорость течения жидкости по определенной длине сосудов. Иными словами, это отрезок, который преодолевают компоненты крови в течение минуты.
Линейная скорость изменяется в зависимости от места продвижения элементов крови — в центре кровяного русла или непосредственно у сосудистых стенок. В первом случае она максимальная, во втором – минимальная. Это происходит в результате трения, действующего на компоненты крови внутри сети сосудов.

Скорость на разных участках

Продвижение жидкости по кровеносному руслу напрямую зависит от объема исследуемой части. Так, например:

• Самая высокая скорость крови наблюдается в аорте. Это объясняется тем, что тут самая узкая часть сосудистого русла. Линейная скорость крови в аорте — 0.5 м/сек.
• Скорость движения по артериям составляет около 0.3 м/секунду. При этом отмечаются практически одинаковые показатели (от 0.3 до 0.4 м/сек) как в сонных, так и в позвоночных артериях.
• В капиллярах кровь движется с наименьшей скоростью. Это происходит вследствие того, что суммарный объем капиллярного участка во много раз превышает просвет аорты. Уменьшение доходит до 0.5 м/сек.
• Кровь течет по венам со скоростью 0.1- 0.2 м/сек.

Определение линейной скорости

Использование ультразвука (эффект Доплера) позволяет с точностью определить СК в венах и артериях. Сущность метода определения скорости данного типа в следующем: на проблемный участок прикрепляют специальный датчик, узнать нужный показатель позволяет изменение частотности звуковых колебаний, отражающих процесс течения жидкости. Высокая скорость отражает низкую частоту звуковых волн. В капиллярах скорость определяется с использованием микроскопа. Наблюдение ведется за продвижением по кровяному руслу одного из эритроцитов.

Индикаторный

При определении линейной скорости также используется индикаторный способ. Применяются меченные радиоактивными изотопами эритроциты. Процедура предусматривает введение в вену, расположенную в локте, индикаторного вещества и прослеживание его появления в крови аналогичного сосуда, но в другой руке.

Формула Торричелли

Еще одним методом является применение формулы Торричелли. Здесь учитывается свойство пропускной способности сосудов. Есть закономерность: циркуляция жидкости выше в том участке, где имеется наименьшее сечение сосуда. Такой участок — аорта. Самый широкий суммарный просвет в капиллярах. Исходя из этого, максимальная скорость в аорте (500 мм/сек), минимальная – в капиллярах (0.5 мм/сек).

Использование кислорода

При измерении скорости в легочных сосудах прибегают к особому методу, позволяющему определить ее при помощи кислорода. Пациенту предлагают сделать глубокий вдох и задержать дыхание. Время появления воздуха в капиллярах уха позволяет с помощью оксиметра определить диагностический показатель. Средняя для взрослых и детей линейная скорость: прохождение крови по всей системе за 21-22 секунды. Данная норма характерна для спокойного состояния человека. Деятельность, сопровождаемая тяжелой физической нагрузкой, сокращает этот временной промежуток до 10 секунд. Кровообращение в организме человека — это движение главной биологической жидкости по сосудистой системе. О важности данного процесса говорить не приходится. От состояния кровеносной системы зависит жизнедеятельность всех органов и систем. Определение скорости кровотока позволяет своевременно выявить патологические процессы и устранить их с помощью адекватного курса терапии.

Источник

Adblock
detector