Меню

Плотность тока через тепло

Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения. Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий. Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Что такое плотность тока

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник

Закон Джоуля-Ленца: определение, формулы

Почему нагреваются проводники

Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.

Рис. 1. Электрический ток в проводнике нагревает проводник

Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.

Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .

Токовая нагрузка на кабель: как рассчитать сечение

Суммарная величина тока, движущегося по проводнику, зависит от нескольких характеристик: длина, ширина, удельное сопротивление и температура. Повышение температуры сопровождается снижением тока. Любая справочная информация, которую вы обнаружите в таблицах ПУЭ, обычно приводится для комнатной температуры 18 градусов Цельсия.

Помимо электрического тока нужно знать материал для проводника и напряжение. Самый простой расчет сечения кабеля по допустимому току: поделить его значение на 10. Если при изучении таблицы вы не обнаружите нужного значения, то ищите ближайшую, чуть большую величину. Такой вариант возможен для медных проводов, а допустимый ток составляет 40 А или меньше.

Читайте также:  По электрической цепи будет протекать ток если источник является

Допустимые токовые нагрузки на кабель

Допустимые токовые нагрузки на кабель

При расчете токовой нагрузки в сети с постоянным током ориентируются по одножильному кабелю. Напряжение такого тока составляет 12 В. Расчет нагрузки провода, через который подключается лампочка на 0,1 кВт (к примеру, в передней фаре машины), выглядит так:

После этого нетрудно рассчитать сопротивление:

В таблице найдите удельное сопротивление меди, из которой производятся жилы современных проводников. Также предположите, что длина кабеля составляет 2 м. Воспользуйтесь формулой, указанной в разделах выше, чтобы получить площадь сечения подходящего провода:

  • S = (ρ*L)/R = (1,68*10-8*2)/1,44 = 1,2 кв. мм.

Выбор сечения кабеля для сетей постоянного тока
Изучая ПУЭ, можно отыскать бессчетное количество таблиц, в которых определена токовая нагрузка для сетей переменного тока с одно- и трехфазными цепями. Поэтому выполнять такие сложные расчеты необязательно.

Таблица токов, в которой можно найти тип бытового прибора, его приблизительные значения мощности, также указывает и интервал возможного потребляемого тока.

Потребляемые мощность и ток электроприборами

Название электроприбора Мощность, кВт Величина тока, А
Стиральная машина 2 – 2,5 9,0 – 11,4
Электроплита 4,5 – 8,5 20,5 – 38,6
Микроволновая печь 0,9 – 1,3 4,1 – 5,9
Холодильник, морозильник 0,2 – 0,8 0,9 – 3,6
Электрочайник 1,8 – 2,0 8,4 – 9,0
Утюг 0,9 – 1,7 4,1 – 7,7
Пылесос 0,7 – 1,4 3,1 – 6,4
Телевизор 0,12 – 0,18 0,6 – 0,8
Осветительные приборы 0,02 – 0,150 0,1 – 0,6

Однофазная схема электроснабжения дома на 220 В

Однофазная схема электроснабжения дома на 220 В

Если под рукой нет таблицы, но известен потребляемый ток, то вычислить сечение можно в два этапа, используя формулы:

  1. Находят сопротивление материала при данном значении тока. Это можно сделать из формулы Закона Ома I = U/R. Выразив отсюда R, получают R = U/I.
  2. Вычисляют площадь сечения, используя значение удельного сопротивления для конкретного материала. Применяют формулу:
  • ρ – удельное сопротивление;
  • L – длина проводника;
  • S – площадь сечения.

Удельное сопротивление для меди ρ = 1,68*10-8 Ом*м, для алюминия – 2,82*10-8 Ом*м.

I = P/U = 50/12 = 4,15 А.

R = U/I = 12/4,15 = 2,9 Ом.

Зная удельное сопротивление меди и, приняв за максимальную длину провода L = 2 м, подставляют всё известное в формулу.

S = (ρ*L)/R = (1,68*10-8*2)/2,9 = 1,9 мм2.

В ПУЭ есть множество таблиц, по которым можно определить токовую нагрузку однофазных и трёхфазных цепей переменного тока. Не обязательно производить математические вычисления. Достаточно оперировать известными параметрами и правильно определить сечение провода или кабеля.

Плюсы и минусы от нагрева электрическим током

  • Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
  • Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.

Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.

Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.

Расчет допустимой силы тока по нагреву жил

Если выбран проводник подходящего сечения, это исключит падение напряжения и перегревы линии. Таким образом, от сечения зависит то, насколько оптимальным и экономичным будет режим работы электрической сети. Казалось бы, можно просто взять и установить кабель огромного сечения. Но стоимость медных проводников пропорциональна их сечению, и разница при монтаже электропроводки уже в одной комнате может насчитывать несколько тысяч рублей.

Для выбора сечения провода нужно учитывать два важных критерия — допустимые нагрев и потерю напряжения. Получив два значения площади сечения проводника при использовании разных формул, выбирайте большую величину, округлив ее до стандартной. Особенно чувствительны к потере напряжения воздушные линии электропередач.

Допустимые температуры нагрева токопроводящих жил кабелей

Допустимые температуры нагрева токопроводящих жил кабелей

Iд — допустимая нагрузка на кабель (ток по нагреву). Эта величина соответствует току, в течение долгого времени протекающего по проводнику. В процессе этого появляется установленные, длительно допустимая температура (Tд). Расчетная сила тока (Iр) должна соответствовать допустимой (Iд), и для ее определения нужно воспользоваться формулой:

  • Iр=(1000*Pн*kз)/√(3*Uн*hд*cos j),
  • Pн — номинальная мощность, кВт;
  • Kз — коэффициент загрузки (0,85-0,9);
  • Uн — номинальное напряжение оборудования;
  • hд — КПД оборудования;
  • cos j — коэффициент мощности оборудования (0,85-0,92).

Даже если брать во внимание одинаковые токовые величины, тепловая отдача будет разной в зависимости от температуры окружающей среды. Чем ниже температура, тем эффективнее теплоотдача.

Поправочные коэффициенты кабеля в зависимости от температуры окружающей среды

Поправочные коэффициенты кабеля в зависимости от температуры окружающей среды
Температура отличается в зависимости от региона и времени года, поэтому в ПУЭ можно найти таблицы для конкретных значений. Если температура существенно отличается от расчетной, придется использовать коэффициенты поправки. Базовое значение температуры в помещении или снаружи составляет 25 градусов Цельсия. Если кабель прокладывается под землей, то температура изменяется на 15 градусов Цельсия. Однако именно под землей она остается постоянной.

Несколько базовых понятий

А для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»?
Нет, нельзя, так как совсем несложно впасть в две крайности:

  • Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
  • Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.

Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.

Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.

С этим вопросом часто бывает путаница, в том числе в статьях, опубликованных на интернет-сайтах.

Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока — с точки зрения электрической проводимости — это оптимальный вариант.

Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.

Читайте также:  Что такое номинальный ток плавкой вставки номинальный ток предохранителя номинальный ток отключения

Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.

На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.

И слева, и справа - это одножильный провод.

И слева, и справа — это одножильный провод.

Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.

Двухжильный многопроволочный провод

Двухжильный многопроволочный провод

Аналогичная ситуация и с кабелями. По определению, кабель – это конструкция из нескольких изолированных друг от друга проводников, заключенных в общую изолирующую и защитную оболочку. А вот проводники также могут быть одно- или многопроволочными.

Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами

Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами
Жесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.

Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.

При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.

Два взаимосвязанных параметра, которые порой по неопытности путают. Смотрим на схему – по ней все станет понятно.

Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².

Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².
Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.

Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.

Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.

Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.

Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.

Предлагаем ознакомиться: Расчет кабеля по мощности формула

Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 × d²

Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π≈ 3,14. Но в нашем случае такой точности – более чем достаточно!

Это формула сечения однопроволочного проводника. А если нужно найти сечение неизвестного провода, с многопроволочной жилой?

Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.

Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²

где n – это количество проволочек в одной жиле.

Источник

Тепловое действие тока, плотность тока и их влияние на нагрев проводников

Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.

Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.

Закон Джоуля-Ленца

Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.

Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.

Электрическая плитка

Но в большом количестве электрических устройств нагрев, вызываемый током, вреден: электродвигатели, трансформаторы, провода, электромагниты и т. д. — в данных устройствах, не предназначенных для получения тепла, нагрев снижает их КПД, мешает эффективной работе, и даже может привести к аварийным ситуациям.

Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.

Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.

Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.

К примеру для электрических машин, где обмотки изготавливают, как правило, из меди, величина предельно допустимой плотности тока не должна превышать 3-6 ампер на кв.мм. Для лампы накаливания, а точнее для ее вольфрамовой нити, — не более 15 ампер на кв.мм.

Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.

Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.

Нагретые током электрические проводники

С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.

Чем больше площадь поверхности проводника по отношению к его объему, — тем большую плотность тока способен выдержать проводник не перегреваясь. Неизолированные проводники допускают нагрев до более высокой температуры, так как от них тепло отводится прямо в окружающую среду, изоляция этому не препятствует, и охлаждение происходит быстрее, поэтому для них допускается более высокая плотность тока чем для проводников в изоляции.

Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.

Читайте также:  Что чувствуешь когда тебя бьет током

Электродвигатель на экране тепловизора

Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.

Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.

Электрическое соединение жил кабеля с помощью клеммника

Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.

В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.

Чтобы этого избежать, концы соединяемых проводников надежно зачищают, облуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.

К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.

Источник



Плотность тока — что это такое и в чем измеряется

Проходя по длине проводникового элемента, электроток распределяется по его поверхности неравномерно. Плотность электрического тока характеризует распределение токовых зарядов по поперечному сечению проводящего материала.

Неравномерное распределение электротока по проводнику

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Плотность тока и мощность

Работа, которую электрополе совершает над источниками токового движения, может быть охарактеризована плотностью мощности (она равна энергии, деленной на произведение объема проводника и временного периода). Самый распространенный путь данной мощности – рассеивание во внешнее пространство в качестве тепловой энергии. Но некоторая ее доля может превращаться в механическую энергию (например, при работе электрического двигателя) или в разные типы излучения.

Закон Ома

Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:

где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.

Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:

w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).

Выражение для работы в этом случае примет вид:

w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).

В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.

Единица измерения плотности электротока

Для выражения плотностной величины применяется производная от единиц измерения токовой силы (Ампер) и площади поперечного разреза (квадратный метр), а также дольных и кратных указанным. Обычно плотность измеряется в амперах, разделенных на квадратный метр (А/м2). Вместо слова «плотность» иногда используют «насыщенность электрического тока».

Важно! Поскольку величина имеет направление, она относится к категории векторных (или скалярных). Этот вектор проходит вдоль оси электрического тока.

Формула вычисления

Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.

Это можно записать так:

j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).

Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:

Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:

j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).

4-вектор плотности тока

Данное обозначение из теории относительности призвано обобщать явление плотности на пространственно-временной континуум, оперирующий четырьмя измерениями. Такой четырехвектор включает в себя трехвекторное выражение токовой плотности (скалярной величины) и имеющей объем плотности электрического заряда. Использование четырехвектора дает возможность формулировать электродинамические уравнения ковариантным образом.

Рассматриваемая величина необходима для описания концентрации и равномерности распределения заряженных микрочастиц по проводниковому материалу, в котором существует та или иная форма электротока. При оперировании с выражениями, содержащими величину, нужно не забывать о ее скалярности.

Видео

Источник

Adblock
detector