Меню

Плошадь витка с током

6.3. Магнитное поле на оси кругового тока

Напряженность магнитного поля на оси кругового тока (рис. 6.17-1), создаваемого элементом проводника Idl, равна

поскольку в данном случае

Рис. 6.17. Магнитное поле на оси кругового тока (слева) и электрическое поле на оси диполя (справа)

При интегрировании по витку вектор будет описывать конус, так что в результате «выживет» только компонента поля вдоль оси 0z. Поэтому достаточно просуммировать величину

выполняется с учетом того, что подынтегральная функция не зависит от переменной l, а

Соответственно, полная магнитная индукция на оси витка равна

В частности, в центре витка (h = 0) поле равно

На большом расстоянии от витка (h >> R) можно пренебречь единицей под радикалом в знаменателе. В результате получаем

Здесь мы использовали выражение для модуля магнитного момента витка Рm , равное произведению I на площадь витка Магнитное поле образует с круговым током правовинтовую систему, так что (6.13) можно записать в векторной форме

Для сравнения рассчитаем поле электрического диполя (рис. 6.17-2). Электрические поля от положительного и отрицательного зарядов равны, соответственно,

так что результирующее поле будет

На больших расстояниях (h >> l) имеем отсюда

Здесь мы использовали введенное в (3.5) понятие вектора электрического момента диполя . Поле Е параллельно вектору дипольного момента, так что (6.16) можно записать в векторной форме

Аналогия с (6.14) очевидна.

Силовые линии магнитного поля кругового витка с током показаны на рис. 6.18. и 6.19

Рис. 6.18. Силовые линии магнитного поля кругового витка с током на небольших расстояниях от провода

Рис. 6.19. Распределение силовых линий магнитного поля кругового витка с током в плоскости его оси симметрии.
Магнитный момент витка направлен по этой оси

На рис. 6.20 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг кругового витка с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.

Магнитные силовые линии для витка, ось которого лежит в плоскости пластинки, сгущаются внутри витка. Вблизи проводов они имеют кольцевую форму, а вдали от витка поле быстро спадает, так что опилки практически не ориентируются.

Рис. 6.20. Визуализация силовых линий магнитного поля вокруг кругового витка с током

Пример 1. Электрон в атоме водорода движется вокруг протона по окружности радиусом аB = 53 пм (эту величину называют радиусом Бора по имени одного из создателей квантовой механики, который первым вычислил радиус орбиты теоретически) (рис. 6.21). Найти силу эквивалентного кругового тока и магнитную индукцию В поля в центре окружности.

Рис. 6.21. Электрон в атоме водорода

Решение. Заряды электрона и протона одинаковы по величине (е) и противоположны по знаку. На электрон действует сила кулоновского притяжения протона, создающая центростремительное ускорение

откуда находим угловую скорость движения электрона по круговой орбите

Период обращения электрона вокруг ядра равен

Если представить себе воображаемую площадку, ортогональную траектории электрона, то за время Т через нее проходит заряд е. Поэтому сила эквивалентного тока равна

Скорость движения электрона равна v = аB = 2,18·10 6 м/с. Движущийся заряд создает в центре орбиты магнитное поле

Этот же результат можно получить с помощью выражения (6.12) для поля в центре витка с током, силу которого мы нашли выше

Читайте также:  Безщеточный двигатель постоянного тока устройство

Пример 2. Бесконечно длинный тонкий проводник с током 50 А имеет кольцеобразную петлю радиусом 10 см (рис. 6.22). Найти магнитную индукцию в центре петли.

Рис. 6.22. Магнитное поле длинного проводника с круговой петлей

Решение. Магнитное поле в центре петли создается бесконечно длинным прямолинейным проводом и кольцевым витком. Поле от прямолинейного провода направлено ортогонально плоскости рисунка «на нас», его величина равна (см. (6.9))

Поле, создаваемое кольцеобразной частью проводника, имеет то же направление и равно (см. 6.12)

Суммарное поле в центре витка будет равно

Дополнительная информация

Источник

Плошадь витка с током

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции :

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции , которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δ этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).

Циркуляцией вектора называют сумму произведений Δ, взятую по всему контуру :

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур в то время, как другие токи могут находиться в стороне от контура.

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи 2 и 3 пронизывают контур в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, , а . Ток 1 не пронизывает контур .

Теорема о циркуляции в данном примере выражается соотношением:

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур целесообразно выбрать в виде окружности некоторого радиуса , лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор направлен по касательной , а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.

Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).

Читайте также:  Импульсный стабилизатор тока 12 вольт

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае . Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами . Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.

На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.

Источник

Магнитный момент витка. Определение. Формула. Опыт.

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Где, I ток протекающий по витку

S площадь витка с током

n нормаль к плоскости в которой находится виток

Таким образом, из формулы видно, что магнитный момент витка это векторная величина. То есть кроме величины силы, то есть ее модуля он обладает еще и направлением. Данное свойство магнитный момент получил из-за того что в его состав входит вектор нормали к плоскости витка.

Для закрепления материала можно провести несложный опыт. Для этого нам понадобится круговой виток, из медной проволоки подключённый к батареи питания. При этом подводящие провода должны быть достаточно тонкими и желательно свиты между собой. Это уменьшит их влияние на опыт.

Читайте также:  Схема измерения действующего тока

Теперь подвесим виток на подводящих проводах в однородном магнитном поле, созданном скажем постоянными магнитами. Виток пока обесточен, и его плоскость располагается параллельно силовым линиям поля. При этом его ось и полюса воображаемого магнита будут перпендикулярны линиям внешнего поля.

При подаче тока на виток его плоскость повернется перпендикулярно силовым линиям постоянного магнита, а ось станет им параллельна. Причем направление поворота витка будет определяться правилом буравчика. А строго говоря, направлением, в котором течет ток по витку.

Источник



Поле витка с током

Магнитное поле, создаваемое элементом тока.

Для магнитного поля справедлив принцип суперпозиции: магнитная индукция поля B, создаваемого несколькими источниками, равна векторной сумме индукций отдельных источников:

Поэтому магнитное поле тока можно рассматривать, как сумму полей всех движущихся зарядов. Поле, создаваемое участком проводника, повторяет свойства поля движущегося точечного заряда: такая же зависимость магнитной индукции от направления и расстояния; направление силовых линий находится по правилу буравчика (см. рис.9).

Магнитная индукция dB, создаваемая участком проводника длиной dL, рассчитывается по закону Био-Савара- Лапласа:

где I – ток, протекающий через участок проводника; r – радиус-вектор, проведенный от участка проводника в точку, в которой рассчитывается магнитная индукция; dL – вектор, его направление совпадает с направлением тока в проводнике.

Поле, создаваемое проводником произвольной формы, находится интегрированием выражения (13), по всем элементам проводника dL:

Результирующее поле зависит от расстояния до проводника, от конфигурации и размеров проводника, а также от силы тока в цепи.

Рассчитаем магнитную индукцию на оси круглой рамки с током.

Вектор магнитной индукции dB в точке А, создаваемой элементом рамки dL,находится по формуле (10) (см. рис.10)

Вектор dB перпендикулярен r и dL, он направлен под углом φ к оси кольца. Его величина равна

Полное магнитное поле от всего проводника с током находится интегрированием выражения (10) по всему контуру. Прежде, чем интегрировать, отметим, что из-за осевой симметрии задачи результирующая индукция должна быть направлена вертикально вверх. Горизонтальные компоненты вектора dB от различных участков кольца скомпенсируют друг друга, поэтому нас будет интересовать только вертикальная составляющая вектора dB

Для всех участков кольца dL расстояния r до точки наблюдения одинаковы, также не изменяется и угол φ. Проинтегрируем (12) по dL,

С учетом того, что , а , получим

В центре кольца (z = 0) магнитная индукция равна

где nединичный вектор нормали к плоскости кольца.

Следует отметить, что в целом поле кольца с током существенно неоднородно (см. рис.11). Однако в середине витка это поле можно считать достаточно однородным.

Если в (13) ток I выразить через магнитный момент кольца pm=IS=πR 2 I, то поле вдоль оси кольца

При большом удалении от витка поле спадает, как 1/z 3 . По такому же закону убывает напряженность электрического поля, создаваемого электрическим диполем. Поведение витка с током в магнитном поле полностью повторяет поведение электрического диполя в электрическом поле. Также виток с током подобен постоянному магниту, у которого имеется два полюса – северный и южный (см. далее). Поэтому виток с током можно рассматривать, как магнитный диполь.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник