Частотные характеристики и параметры переменного тока
Период и частота переменного тока
Время, в течение которого совершается одно полное изменение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания переменного тока (рисунок 1).
Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.
Период выражают в секундах и обозначают буквой Т.
Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.
1 мс =0,001сек =10-3сек.
1 мкс=0,001 мс = 0,000001сек =10-6сек.
Число полных изменений ЭДС или число оборотов радиуса-вектора, то есть иначе говоря, число полных циклов колебаний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.
Частота обозначается буквой f и выражается в периодах в секунду или в герцах.
Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.
1000 Гц = 103 Гц = 1 кГц;
1000 000 Гц = 106 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 109 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;
Чем быстрее происходит изменение ЭДС, то есть чем быстрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.
Математическая связь между периодом и частотой переменного тока и напряжения выражается формулами
Например, если частота тока равна 50 Гц, то период будет равен:
Т = 1/f = 1/50 = 0,02 сек.
И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:
f = 1/T=1/0,02 = 100/2 = 50 Гц
Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.
Частоты от 20 до 20 000 Гц называются звуковыми частотами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие высокие частоты называются радиочастотами или колебаниями высокой частоты.
Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.
Нормируемые требования к показателям
В РФ требования к качеству работы энергосистемы стандартизированы.
В соответствии с ГОСТ 13109-97 частота в энергосистеме должна непрерывно поддерживаться на уровне f = 50 ± 0,2 Гц, при этом допускается кратковременное отклонение частоты до значения ∆f = 0,4 Гц.
Анализируя зависимость силы тока от частоты, можно сделать вывод, что если подключаемая нагрузка имеет чисто активный характер (к примеру, резистор), то в широком диапазоне сила тока от частоты иметь зависимость не будет. В случае достаточно высоких частот, когда индуктивность и ёмкость подключаемой нагрузки будут характеризоваться сопротивлением, сравнимым с активным, то сила тока будет иметь определенную зависимость от частоты.
Другими словами, при варьировании частоты тока происходит изменение ёмкостного сопротивления, изменение которого, в свою очередь, приводит к изменению тока, протекающего по цепи.
То есть при повышении частоты, снижается ёмкостное сопротивление, и повышается ток, протекающий по цепи.
Математическое выражение зависимости будет иметь следующий вид: I = UCω;
Зависимость при учете активного сопротивления будет определяться следующим выражением: I (ω) = UCω √(R2 • C2 • ω2 + 1).
Угловая (циклическая) частота переменного тока.
Скорость вращения радиуса-вектора, т. е. изменение величины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (омега). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.
Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.
Рисунок 2. Радиан.
Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в течение одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его конец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ?.
Переменный электрический ток
В английском языке этому термину соответствует выражение alternating current — аббревиатура AC, в энерготехнике как буквенное обозначение используют знак тильда (
). Переменный ток изменяется в периоде по синусоиде. Источниками служат генераторы, вырабатывающие ЭДС посредством электромагнитной индукции. Характеризуется АС следующими параметрами:
- напряжение сети U в вольтах;
- сила тока I=Q/Δt, [A] — количество зарядов, прошедших через поперечник проводника в единицу времени;
- период Т — отрезок времени полного цикла изменений;
- частота f — количество колебаний в течение секунды: f =1/Т, [Гц] в отечественных сетях стандарт 50 герц;
- плотность тока j=I/S, [A/мм2] — векторная величина, где S площадь сечения проводника, направление j совпадает с курсом движения электронов;
- фаза — состояние АС, может быть одно- и многофазным;
- амплитуда I max — высота синусоиды, максимальная величина мгновенно достигаемого за период значения тока.
В энергетике преимущественно используются трёхфазные сети: 3 отдельных электроцепи с одинаковыми напряжением и частотой при сдвиге φ=120°. От стабильности колебательных движений нуклонов в системе зависит устойчивость и надёжность работы всей энергосети.
Фаза переменного тока.
Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза показывает, убывает ли ЭДС или возрастает.
Рисунок 3. Фаза переменного тока.
Полный оборот радиуса-вектора равен 360°. С началом нового оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следовательно, все фазы ЭДС будут повторяться в прежнем порядке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обоих этих случаях радиус-вектор занимает одинаковое положение, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
- Понятие о переменном токе
- Получение переменного тока
- Действующее значение тока и напряжения
- Сдвиг фаз переменного тока и напряжения
- Мощность переменного тока
Комментарии
Руслан_98 24.10.2018 18:22 Хорошо объяснили. Разжевали для таких невежд, как я)
Илья_95 10.09.2018 16:27 Спасибо, долго и с длинными периодами я шёл к этой информации. Прояснились понятия периода и фазы наконец, словно получилось добыть первобытный огонь, или догадаться до того, чтобы убрать руку во время того, как вцепился в раскалённую сковородку.
Петя 07.02.2015 17:36 спасибо.надеюсь сдам
Обновить список комментариев
Параметры сетевого напряжения в России[ | ]
Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.
Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц[1] (межфазное напряжение 400 , напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».
К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод)
линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.
В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220
, но фактически напряжение в сети почти всегда выше этого значения и достигает 230—240 В, варьируясь от 190 до 250 В[2][
источник не указан 703 дня
].
Номинальные напряжения бытовых сетей (низкого напряжения): Россия (СССР, СНГ)[ | ]
До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.
Переменный ток 50 Гц с разделённой фазой или постоянный ток, двух-/трёхпроводные линии | Трёхфазный переменный ток, 50 Гц | |||||
110/220 В | 220/440 В | 3×120 В[р 1] (треугольник) | 127/220 В | 220/380 В | 230/400 В[р 2] | |
Временные правила ИРТО, 1891[3] | широко используется | запрещен[р 3] | разрешён | запрещен[р 3] | запрещен[р 3] | запрещен[р 3] |
Дополнение к временным правилам ИРТО от 1898[4] | широко используется | разрешён | широко используется | разрешён | разрешён | — |
ГОЭЛРО I очередь (1920)[5] | предпочтителен[р 4] | |||||
ОСТ 569 (1928)[6] | предпочтителен | предпочтителен | разрешён | — | предпочтителен[р 5] | — |
ОСТ 5155 (1932) | разрешён | разрешён | разрешён[р 6][р 7] | — | разрешён | |
ГОСТ 721-41[7][8] | разрешён | разрешён | допускается сохранение существующих установок | разрешён | предпочтителен[р 8] | — |
ГОСТ 5651-51[9][р 9] | разрешён | разрешён | -[р 10] | разрешён[р 10] | разрешён | — |
ГОСТ 721-62 | разрешён | разрешён | допускается сохранение существующих установок | разрешён | предпочтителен | — |
ГОСТ 5651-64[10][р 9] | — | разрешён | — | разрешён | разрешён | — |
ГОСТ 721-74 | разрешён | разрешён | допускается сохранение существующих установок | разрешён | предпочтителен | |
ГОСТ 21128-75[11] | разрешён | разрешён | — | для ранее разработанного оборудования[р 11] | предпочтителен | — |
ГОСТ 23366-78 | разрешён | разрешён | — | для ранее разработанного оборудования | предпочтителен | — |
ГОСТ 21128-83 | разрешён | разрешён | — | для ранее разработанного оборудования | предпочтителен | разрешён |
ГОСТ 5651-89[р 9] | — | разрешён | — | — | разрешён | — |
ГОСТ 29322-92 (МЭК 38-83) | — | — | — | — | разрешён до 2003 года | предпочтителен |
ГОСТ 29322-2014 (IEC 60038:2009) | — | — | — | — | в текст стандарта внесено примечание: «Однако … до сих пор продолжают применять.» | предпочтителен |
- «Акционерное Общество Электрического Освещения 1886 года» использовало этот номинал (напряжение на зажимах трансформатора 133 В), что и было отражено в ОСТ 569. В результате гармонизации с рекомендациями МЭК в шкале стандартных напряжений ГОСТ 721 он был заменён на номинал 3×127 В, но допускалось сохранение существующих установок 3×120 В. Фактически, сети тех крупных городов, которые его использовали, уже переходили на «звезду» с номиналами 127/220 В и 220/380 В.
- Номинал трёхфазного переменного тока 230/400 В, начиная c ОСТ 569, 1928 года, являлся предпочтительным для источников тока (генераторов и трансформаторов).
- ↑ 1234
Использование тока высокого напряжения выше ±225 В или выше ∼110 В было запрещено в бытовых сетях, не требующих квалифицированного персонала. - Первоначально, в I очереди плана ГОЭЛРО было намечено строительство сетей 120/210 В, исходя из того, что в сетях некоторых крупных городов использовалось 3×120 В (треугольник), однако, при реализации, строили сети 127/220 В.
- 1928-1931 гг. Витебск, Вязьма, Бобруйск, Рыльск, Россошь, Златоуст, Камышин, Камень, Красноярск, Чита, Острогожск, Старобельск, Чугуев, Красноград, Хмельник, Купянск, Проскуров, Червоное … и др. См.: Гейлер Л.Б.
110 или 220 V в распределительных сетях населённых мест // Электричество. — 1933. — № 9. — С. 39. Впоследствии все крупные новые электросети СССР создавались на 220/380 В. - 1932-40 гг., Ленэнерго, переход старых сетей 3×120 В на 127/220 В. См.: Айзенберг Б.Л., Мануйлов Р.Е.
Заземление нейтрали городской кабельной сети низкого напряжения // Электричество. — 1940. — № 11. — С. 54. - 1936-47 гг., Мосэнерго, переход избранных районов старых сетей 3×120 В на 127/220 В. См.: Плюснин К.Л.
Низковольтная замкнутая сетка в Московской кабельной электросети // Электричество. — 1937. — № 22. — С. 7., и
Куликовский А.А.
Система городских распределительных сетей низкого напряжения с искусственными нейтральными точками // Электричество. — 1947. — № 9. — С. 45. - В других стандартах, связанных с промышленным применением, например, ГОСТ 185-41, номинал 127/220 В остался недоступен для новых изделий.
- ↑ 123
Стандарты ГОСТ 5651 — «Аппаратура радиоприёмная бытовая», в частности, определяли номиналы напряжения питания радиоприёмников. - ↑ 12
1950 г., начало перевода низковольтной сети со 127 В на 220/127 В и применения напряжения 380/220 В для электроснабжения новых жилых районов Москвы. См.:
Зуев Э.Н..
Московских окон негасимый свет
(неопр.)
. - 1970-79 гг., Киев, Ленинград и Харьков, в основном, перешли на 220/380 В. Хотя отдельные дома, в которых переход не завершился, встречались и позднее.
Источник
Период, частота, амплитуда и фаза переменного тока
Период и частота переменного тока
Время, в течение которого совершается одно полное изменение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания переменного тока (рисунок 1).
Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.
Период выражают в секундах и обозначают буквой Т.
Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.
1 мс =0,001сек =10 -3 сек.
1 мкс=0,001 мс = 0,000001сек =10 -6 сек.
Число полных изменений ЭДС или число оборотов радиуса-вектора, то есть иначе говоря, число полных циклов колебаний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.
Частота обозначается буквой f и выражается в периодах в секунду или в герцах.
Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.
1000 Гц = 10 3 Гц = 1 кГц;
1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;
Чем быстрее происходит изменение ЭДС, то есть чем быстрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.
Математическая связь между периодом и частотой переменного тока и напряжения выражается формулами
Например, если частота тока равна 50 Гц, то период будет равен:
Т = 1/f = 1/50 = 0,02 сек.
И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:
f = 1/T=1/0,02 = 100/2 = 50 Гц
Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.
Частоты от 20 до 20 000 Гц называются звуковыми частотами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие высокие частоты называются радиочастотами или колебаниями высокой частоты.
Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.
Амплитуда переменного тока
Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно буквами Im, Em и Um (рисунок 1).
Угловая (циклическая) частота переменного тока.
Скорость вращения радиуса-вектора, т. е. изменение величины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (омега). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.
Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.
Рисунок 2. Радиан.
1рад = 360°/2
Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в течение одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его конец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .
? = 6,28*f = 2f
Фаза переменного тока.
Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза показывает, убывает ли ЭДС или возрастает.
Рисунок 3. Фаза переменного тока.
Полный оборот радиуса-вектора равен 360°. С началом нового оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следовательно, все фазы ЭДС будут повторяться в прежнем порядке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обоих этих случаях радиус-вектор занимает одинаковое положение, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Источник
Период и частота переменного тока
Время, в течение которого совершается одно полное изменение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания переменного тока (рисунок 1).
Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.
Период выражают в секундах и обозначают буквой Т.
Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.
1 мс =0,001сек =10 -3 сек.
1 мкс=0,001 мс = 0,000001сек =10 -6 сек.
Число полных изменений ЭДС или число оборотов радиуса-вектора, то есть иначе говоря, число полных циклов колебаний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.
Частота обозначается буквой f и выражается в периодах в секунду или в герцах.
Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.
1000 Гц = 10 3 Гц = 1 кГц;
1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;
Чем быстрее происходит изменение ЭДС, то есть чем быстрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.
Математическая связь между периодом и частотой переменного тока и напряжения выражается формулами
Например, если частота тока равна 50 Гц, то период будет равен:
Т = 1/f = 1/50 = 0,02 сек.
И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:
f = 1/T=1/0,02 = 100/2 = 50 Гц
Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.
Частоты от 20 до 20 000 Гц называются звуковыми частотами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие высокие частоты называются радиочастотами или колебаниями высокой частоты.
Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.
Амплитуда переменного тока
Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно буквами Im, Em и Um (рисунок 1).
Источник
Переменный электрический ток
Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.
Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.
DC — Direct Current — постоянный ток, не меняющий своей величины и направления.
В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.
При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.
Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.
Термины AC и DC применимы как для тока, так и для напряжения.
Параметры переменного тока и напряжения
Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:
Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.
Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)
f = 1 /T
Циклическая частота ω — угловая частота, равная количеству периодов за 2π секунд.
ω = 2πf = 2π/T
Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°
Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.
Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.
Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.
i = i(t); u = u(t)
Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:
i = I ampsin(ωt); u = U ampsin(ωt)
С учётом начальной фазы:
i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)
Здесь I amp и U amp — амплитудные значения тока и напряжения.
Амплитудное значение — максимальное по модулю мгновенное значение за период.
I amp = max|i(t)|; U amp = max|u(t)|
Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.
Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.
Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.
Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.
Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.
Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.
Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:
Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.
Коэффициент амплитуды и коэффициент формы
Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.
Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1
Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1
Замечания и предложения принимаются и приветствуются!
Источник