Меню

Переменный электрический ток уравнения максвелла

Уравнения Максвелла

К середине XIX века ученые открыли целый ряд законов, описывающих электрические и магнитные явления и связи между ними. В частности, были известны:

  • закон Кулона, описывающий силу взаимодействия между электрическими зарядами,
  • теорема Гаусса, исключающая возможность существования в природе изолированных магнитных зарядов (магнитных монополей),
  • закон Био—Савара, описывающий магнитные поля, возбуждаемые движущимися электрическими зарядами (см. такжеЗакон Ампера и Открытие Эрстеда), и
  • законы электромагнитной индукции Фарадея, согласно которым изменение магнитного потока порождает электрическое поле и индуцирует ток в проводниках (см. такжеПравило Ленца).

Эти четыре группы законов и были обобщены Джеймсом Клерком Максвеллом, которому удалось объединить их в стройную систему (получившую его имя), состоящую из четырех уравнений и исчерпывающим образом описывающую все измеримые характеристики электромагнитных полей и электрических токов, которая названа его именем. Прежде всего, Максвеллу мы обязаны строгим математическим описанием всех известных законов электромагнетизма (Фарадей, например, вообще формулировал все открытые им законы исключительно в словесной форме). Во-вторых, в сформулированную им систему Максвелл внес немало принципиально новых идей, отсутствовавших в исходных законах. В-третьих, он придал всем электромагнитным явлениям строгое теоретическое обоснование. И, наконец, в-четвертых, на основе составленной им системы уравнений Максвелл сделал ряд важных предсказаний и открытий, включая предсказание существования спектра электромагнитного излучения.

Давайте начнем со второго пункта. Согласно закону Био—Савара, электрический ток, проходящий по проводнику, возбуждает вокруг него магнитное поле. А что если электрический ток протекает не по проводнику, а через плоский конденсатор? Фактически, электроны не перескакивают с одной пластины на другую, однако ток всё равно проходит через конденсатор, поскольку электроны одной пластины взаимодействуют с электронами другой пластины, находясь в непосредственной близости друг от друга, и, в силу взаимного отталкивания, передают друг другу колебания (так называемые осцилляции) переменного тока, обеспечивая, тем самым, протекание тока через, казалось бы, очевидный разрыв в электрической цепи.

Максвелл понял, что закон Ампера в этой ситуации не объясняет прохождение тока. Он также понял, что, хотя заряды с пластины на пластину не переходят, электрическое поле (сила, которая возникла бы, если бы мы поместили между пластинами воображаемый электрический заряд) увеличивается. Исходя из этого он постулировал, что в мире электромагнитных явлений изменяющееся электрическое поле может играть ту же роль в порождении магнитного поля, что и электрический ток. Максвелл ввел принципиально новое понятие тока смещения, добавив его в качестве отдельного слагаемого в обобщенный закон Ампера — первое уравнение Максвелла. И с тех пор наличие токов смещения раз за разом безоговорочно подтверждается экспериментальными данными.

Внеся столь важное дополнение в первое из четырех уравнений, Максвелл на основании составленной им системы уравнений чисто математически вывел фантастическое по тем временам предсказание: в природе должны существовать электромагнитные волны, формирующиеся в результате колебательного взаимодействия электрических и магнитных полей, и скорость их распространения должна быть пропорциональна силе между зарядами или между магнитами. Решив составленное им дифференциальное волновое уравнение, Максвелл с удивлением обнаружил, что скорость распространения электромагнитных колебаний совпадает со скоростью света, к тому времени уже определенной экспериментально. Это означало, что столь знакомое всем явление, как свет, представляет собой электромагнитные волны! Более того, Максвелл предсказал существование электромагнитных волн во всем известном спектре — от радиоволн до гамма-лучей. Таким образом, доскональное теоретическое исследование природы электричества и магнетизма привело к открытию, принесшему человечеству неисчислимые блага — от микроволновых печей до рентгеновских установок в стоматологических клиниках.

Джеймс Клерк МАКСВЕЛЛ

Шотландский физик, один из самых выдающихся теоретиков XIX столетия. Родился в Эдинбурге, происходит из старинного дворянского рода. Учился в Эдинбургском и Кембриджском университетах. Первую научную статью (о методе начертания идеального овала) опубликовал в возрасте 14 лет. Максвелл занимал должность профессора кафедры экспериментальной физики Кембриджского университета, когда в 48 лет безвременно скончался от рака.

Первым большим теоретическим исследованием Клерка Максвелла, как его часто именуют, стала работа по теории цвета и цветного зрения. Он первым показал, что вся гамма видимых цветов может быть получена путем смешения трех основных цветов — красного, желтого и синего; объяснил природу дальтонизма (дефекта зрения, приводящего к нарушению восприятия цветовой гаммы) врожденным или приобретенным дефектом рецепторов сетчатки глаза. Он первым изобрел реально работающий цветной фотоаппарат (с использованием тартановой ленты в качестве светочувствительного материала) и продемонстрировал его работу на собрании Лондонского королевского общества в 1861 году. Как бы между делом тщательно рассчитал возможную структуру колец Сатурна и доказал, что они не могут быть жидкими, как ранее считалось, а должны состоять из твердых частиц.

Читайте также:  Ощущение как будто проходит ток по телу

Максвелл внес важный вклад в развитие многих отраслей естествознания. Но, пожалуй, наиважнейшее его достижение состоит в развитии теории электромагнетизма и постановке ее на прочную математическую основу. Заниматься этим вопросом Максвелл начал в середине 1850-х годов. По иронии судьбы Максвелл твердо верил в существование светоносного эфира, и все свои уравнения выводил исходя из того, что эфир существует, и в нем возбуждаются электромагнитные волны, имеющие, как следствие, конечную скорость распространения. До результатов опыта Майкельсона—Морли, опровергающих теорию существования эфира, Максвелл не дожил. (Как не дожил он и до безоговорочного признания своей теории. Окончательно волновая природа света и правильность уравнений Максвелла были подтверждены опытами Герца лишь в 1888 году, а до того времени большинство физиков, включая самого Герца, с недоверием относились к столь смелой теории. — Примечание переводчика.) К счастью для него и для нас, теорию Максвелла этот опыт не отменил, поскольку уравнения Максвелла выполняются независимо от наличия или отсутствия эфира.

Наконец, Максвелл внес огромный вклад в становление статистической механики, найдя распределение молекул газа по скоростям, ставшее краеугольным камнем молекулярно-кинетической теории. Наконец, сам же Максвелл и подметил несовершенство этой теории, сформулировав парадокс, позже получивший название демона Максвелла.

Великолепная математическая модель Максвелла, «вынудившая» Эйнштейна «изобрести» относительность Времени, —
горестно подтверждает вдвоём оксюморон Прудона:
«Заблуждения — ступени науки.»

Поразительно тупо . молчание всех виденных мною учебников про нулевое поле Максвелла между одинаково заряженными плоскостями, — дальнодействующими!

Источник

Система уравнений Максвелла для электромагнитного поля: смысл, способы решения

Уравнения Максвелла в электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм.

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Уравнения Максвелла неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Джеймс Клерк Максвелл (1831-1879)

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Первое уравнение Максвелла

Современный вид первого уравнения Максвелла таков:

Первое уравнение Максвелла

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро» – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса.

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса, только уже не для электрического поля, но для магнитного.

Электродинамика. Третье уравнение Максвелла

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея. Его вид:

Второе уравнение Максвелла

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое уравнение Максвелла

Четвертое — самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения.

Четвертое уравнение Максвелла

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Читайте также:  Измерение тока шунты расширение пределов измерения амперметров

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Уравнения Максвелла

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис. Подробное объяснение любого задания и отличная оценка гарантированы.

Источник

§25. Ток смещения и система уравнений Максвелла

Мы установили, что изменяющееся магнитное поле порождает изменяющееся электрическое поле, которое в свою очередь порождает изменяющееся магнитное поле и т. д. В результате образуются сцепленные между собой электрическое и магнитное поля, составляющие электромагнитную волну. Она “отрывается” от зарядов и токов, которые ее породи­ли. Способ существования электромагнитной волны делает невозможным ее неподвижность в пространстве и постоянство напряженности во времени.

Постоянный ток не протекает в цепи с конденсатором, а в случае переменного напряжения в цепи ток протекает через конденсатор. Для постоянного тока конденсатор – разрыв в цепи, а для переменного этого разрыва нет. Поэтому необходимо заключить, что между обкладками конденсатора происходит некоторый процесс, который как бы замыкает ток проводимости. Этот процесс между обкладками конденсатора был назван током смещения. Напряженность поля между обкладками конденсатора . Из граничного условия для вектора следует, что диэлектрическое смещение между обкладками , а сила тока в цепи равна . Тогда

, (25.1)

А значит процессом, замыкающим ток проводимости в цепи, является изменение электрического смещения во времени. Плотность тока

. (25.2)

Существование тока смещения было постулировано Максвеллом в 1864 г. и затем экспериментально подтверждено другими учеными.

Почему скорость изменения вектора смещения называется плотностью тока? Само по себе математическое равенство величины , характеризующей процесс между обкладками конденсатора, т. е. равенство двух величин, относящихся к разным областям пространства и имеющим различную физическую природу, не содержит в себе, вообще говоря, какого-то физического закона. Поэтому называть ”током” можно только формально. Для того чтобы придать этому названию физический смысл, необходимо доказать, что обладает наиболее характерными свойствами тока, хотя и не представляет движения электрических зарядов, подобного току проводимости. Главным свойством тока проводимости является его способность порождать магнитное поле. Поэтому решающим является вопрос о том, порождает ли ток смещения магнитное поле так же, как его порождают ток проводимости, или, более точно, порождает ли величина (25.2) такое же магнитное поле, как равная ей объемная плотность тока проводимости? Максвелл дал утвердительный ответ на этот вопрос. Однако наиболее ярким подтверждением порождения магнитного поля током смещения является существование электромагнитных волн. Если бы ток смещения не создавал магнитного поля, то не могли бы существовать электромагнитные волны.

Уравнение Максвелла с током смещения.

Порождение магнитного поля токами проводимости описывается уравнением

(25.3)

Учитывая порождение поля током смещения, необходимо обобщить это уравнение в виде

(25.4)

Тогда, принимая во внимание (25.2), окончательно получаем уравнение

, (25.5)

Являющееся одним из уравнений Максвелла.

Система уравнений Максвелла.

Полученная в результате обобщения экспериментальных данных, эта система имеет вид:

, (25.6)

Эти уравнения называются полевыми и справедливы при описании всех макроскопических электромагнитных явлений. Учет свойств среды достигается уравнениями

, (25.7)

Называемыми обычно Материальными уравнениями среды. Среды линейны, если и нелинейны если . Материальные уравнения, как правило, имеют вид функционалов.

Рассмотрим физический смысл уравнений.

Уравнение I выражает закон, по которому магнитное поле порождается токами проводимости и смещения, являющимися двумя возможными источниками магнитного поля. Уравнение II выражает закон электромагнитной индукции и указывает на изменяющееся магнитное поле как на один из возможных источников, порождающих электрическое поле. Вторым источником электрического поля являются электрические заряды (уравнение IV). Уравнение III говорит о том, что в природе нет магнитных зарядов.

Полнота и совместность системы. Единственность решения.

В случае линейной среды можно исключить из полевых уравнений (25.6) величины в результате чего они становятся уравнениями относительно векторов и , т. е. относительно шести неизвестных (у каждого вектора по 3 проекции). С другой стороны число скалярных уравнений в (25.6) равно восьми. Получается, что система состоит из 8 уравнений для 6 неизвестных. Однако в действительности система не переполнена. Это обусловлено тем, что уравнения I и IV, а также II и III имеют одинаковые дифференциальные следствия и поэтому связаны между собой.

Читайте также:  При нормальных условиях газы проводят ток или нет

Чтобы в этом убедиться возьмем от уравнения II и производную по времени от уравнения III. Получим:

,

Т. е. получили одинаковые дифференциальные следствия. Аналогично возьмем от уравнения I:

.

С из уравнения непрерывности следует, что . Тогда

или . Из IV следует, что

Наличие двух дифференциальных связей и делает систему уравнений Максвелла совместной. Более подробный анализ показывает, что система является полной, а ее решение однозначно при заданных начальных и граничных условиях.

Доказательство единственности решения в общих чертах сводится к следующему. Если имеется два различных решения, то их разность вследствие линейности системы тоже является решением, но при нулевых зарядах и токах и нулевых начальных и граничных условиях. Отсюда, пользуясь выражением для энергии электромагнитного поля и законом сохранения энергии заключаем, что разность решений тождественно равна нулю, т. е. решения одинаковы. Тем самым единственность решения уравнений Максвелла доказана.

Источник



Уравнения Максвелла

Полная система уравнений Максвелла для электромагнитного поля имеет вид:




Следующая система уравнений:




справедлива для переменного электромагнитного поля …

1) при наличии заряженных тел и в отсутствие токов проводимости

2) при наличии заряженных тел и токов проводимости

3) при наличии токов проводимости и в отсутствие заряженных тел

4) в отсутствие заряженных тел и токов проводимости

Система уравнений Максвелла (для переменных полей)
Уравнение Что характеризует
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями. В скобках правой части уравнения указана плотность полного тока, равного сумме токов проводимости j и смещения .
Это уравнение выражает теорему Гаусса для электростатического поля: поток вектора напряженности электростатического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на . Если правая часть уравнения равна нулю, т.е. , то уравнение означает об отсутствии зарядов (заряженных тел) внутри замкнутой поверхности.
Это уравнение показывает на отсутствие в природе магнитных зарядов.
Ответ: вариант 3. Приведенная система уравнений Максвелла справедлива при наличии токов проводимости и в отсутствие заряженных тел. На наличие токов проводимости в системе показывает уравнение , и отсутствие заряженных тел обусловлено уравнением .

Полная система уравнений Максвелла для электромагнитного поля имеет вид:




Следующая система уравнений:



1) справедлива для переменного электромагнитного поля …

2) при наличии заряженных тел и токов проводимости

3) при наличии токов проводимости и в отсутствие заряженных тел

4) при наличии заряженных тел и в отсутствие токов проводимости

5) в отсутствие заряженных тел и токов проводимости

Решение: В приведенной системе уравнений, в частности , отсутствует ток проводимости j(см. предыдущее задание). Ответ: вариант 4.

Полная система уравнений Максвелла для электромагнитного поля имеет вид:




Следующая система уравнений:




справедлива для …

1) стационарного электромагнитного поля в отсутствие заряженных тел

2) стационарных электрических и магнитных полей

3) стационарного электромагнитного поля в отсутствие токов проводимости

4) переменного электромагнитного поля при наличии заряженных тел и токов проводимости

Система уравнений Максвелла (для стационарных полей )
Уравнение Что характеризует
Это уравнение показывает, что источниками электрического поля в данном случае являются только электрические заряды. Правая часть уравнения , т.к.
Это уравнение показывает, что магнитные поля могут возбуждаться в данном случае только движущимися зарядами (токами проводимости). Ток смещения ,т.к. .
Это уравнение выражает теорему Гаусса для электростатического поля: поток вектора напряженности электростатического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на . Если правая часть уравнения равна нулю, т.е. , то уравнение означает об отсутствии зарядов (заряженных тел) внутри замкнутой поверхности.
Это уравнение показывает на отсутствие в природе магнитных зарядов.
Ответ: вариант 2. Отметим, что последние два уравнения Максвелла при переходе из стационарных полей в переменные, и наоборот, не изменяются.

Уравнение Максвелла, описывающее отсутствие в природе магнитных зарядов, имеет вид .

1)

2)

3)

4)

Решение: Уравнение Максвелла, описывающее отсутствие в природе магнитных зарядов, имеет вид . Ответ: вариант 3.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник