Определите действующее значение силы тока в его первичной обмотке
§ 83. Рабочий процесс трансформатора
При работе трансформатора под нагрузкой (рис. 104) в первичной и во вторичной его обмотке протекают токи, создающие потоки рассеяния Φs1 и Φs2. Потоки рассеяния сцеплены только с витками той обмотки, током которой они создаются, и всегда много меньше основного магнитного потока Φo, замыкающегося по магнитопроводу трансформатора (по стали), так как потоки рассеяния проходят через немагнитную среду.
Основной магнитный поток Φo, пронизывая витки первичной и вторичной обмоток, индуктирует в них э. д. с., зависящие от числа витков обмотки, амплитуды магнитного потока и частоты его изменения. Действующие значения э. д. с. обмоток:
где Е1 и Е2 — действующие значения э. д. с. первичной и вторичной обмоток;
ω1 и ω2 — числа витков этих обмоток;
f — частота тока;
Φm — амплитуда (наибольшее значение) магнитного потока в сердечнике, вб.
Так как потоки рассеяния и падения напряжения в сопротивлениях обмоток трансформатора очень малы, то приближенно можно считать, что напряжения на зажимах первичной U1 и вторичной U2 обмоток равны э. д. с. этих обмоток, т. е. U1 = E1 и U2 = E2.
При холостом ходе трансформатора оба напряжения практически не отличаются по величине от соответствующих э. д. с. По этой причине отношение напряжений на зажимах первичной и вторичной обмоток трансформатора при холостом ходе (без нагрузки) называется коэффициентом трансформации и обозначается буквой K, т. е.
Таким образом, если в трансформаторе первичная и вторичная обмотки имеют различное число витков, то при включении первичной обмотки в сеть переменного тока с напряжением U1 на зажимах вторичной обмотки возникает напряжение U2, не равное напряжению U1. Если число витков вторичной обмотки меньше числа витков первичной, то в той же мере напряжение на зажимах вторичной обмотки меньше напряжения первичной обмотки и трансформатор является понижающим. Если же число витков вторичной обмотки больше числа витков первичной, то и напряжение вторичной обмотки больше напряжения первичной и трансформатор окажется повышающим.
Пример. Первичная обмотка трансформатора с числом витков ω1 = 660 включена в сеть напряжением U1 = 220 в. Определить напряжение на зажимах вторичной обмотки, если число ее витков ω2 = 36.
Решение .
Напряжение и э. д. с. вторичной обмотки трансформатора зависит от числа витков. Поэтому наиболее простым способом регулирования напряжения трансформатора является изменение числа витков одной из обмоток, чаще обмотки высшего напряжения.
Число витков изменяется обычно в пределах ± 5% от номинального. Для этой цели от одного из концов обмотки делают отводы.
Если вторичную обмотку трансформатора замкнуть на какой-либо приемник электрической энергии, то во вторичной цепи будет протекать ток I2, а в первичной обмотке ток I1 который может быть представлен геометрической суммой тока холостого хода и нагрузочного тока.
Первичная и вторичная обмотки трансформатора электрически не соединены. Однако надо иметь в виду, что за счет магнитной связи между этими обмотками изменение тока во вторичной обмотке I2 будет вызывать соответствующее изменение тока первичной обмотки I1. Если увеличится ток во вторичной обмотке, то увеличится ток и в первичной обмотке. Наоборот, при уменьшении тока во вторичной обмотке уменьшится ток и в первичной обмотке. Если разомкнуть вторичную обмотку, то ток в ней станет равным нулю, а в первичной обмотке уменьшится до малой величины.
Ток I0, протекающий по первичной обмотке трансформатора, при разомкнутой вторичной цепи называется током холостого хода, который значительно меньше номинального тока трансформатора.
По первичной и вторичной обмоткам при нагрузке протекают численно неравные токи. Если пренебречь потерями мощности в трансформаторе, то можно записать, что мощность, отдаваемая трансформатором приемнику энергии U2I2, равна мощности, потребляемой им из сети источника энергии U1I1 т. е.
I2 = K I1. (105)
Пренебрегая падением напряжения в сопротивлениях первичной обмотки трансформатора, можно допустить, как это было показано выше, при любой его нагрузке приближенное равенство абсолютных величин приложенного напряжения U1 и уравновешивающей это напряжение э. д. с. первичной обмотки, т. е.
U1 = E1. (106)
На основании этого равенства можно сказать, что при неизменном по величине приложенном напряжении U1 будет приблизительно неизменной э. д. с. E1 индуктируемая в первичной обмотке трансформатора при любой его нагрузке.
А так как э. д. с. E1 зависит от магнитного потока φm, то и магнитный поток в магнитопроводе трансформатора при любом изменении нагрузки будет приблизительно неизменным.
Таким образом, при неизменном приложенном напряжении магнитный поток в сердечнике трансформатора будет практически неизменным при любом изменении нагрузки.
Ток I2, протекающий по вторичной обмотке при нагрузке трансформатора, создает свой магнитный поток, который, согласно закону Ленца, направлен встречно магнитному потоку в сердечнике, стремясь его уменьшить. Чтобы результирующий магнитный поток в сердечнике остался неизменным, встречный магнитный поток вторичной обмотки должен быть уравновешен магнитным потоком первичной обмотки.
Следовательно, при увеличении тока вторичной обмотки I2 возрастает размагничивающий магнитный поток этой обмотки и одновременно повышается как ток первичной обмотки I1 так и магнитный поток, создаваемый этим током. Так как магнитный поток первичной обмотки уравновешивает размагничивающий поток вторичной обмотки, то результирующий магнитный поток в сердечнике поддерживается неизменным.
В понижающем трансформаторе напряжение первичной обмотки U1 больше напряжения вторичной обмотки U2 в K раз, следовательно, и сила тока вторичной обмотки I2 больше силы тока первичной обмотки I1 также в К раз. В повышающем трансформаторе имеет место обратное соотношение между напряжениями его обмоток и между силами токов в них. Если, например, включить на полную нагрузку трансформатор, напряжения первичной и вторичной обмоток которого равны U1 = 220 в, U2 = 24 в, то при номинальной силе тока первичной обмотки = 0,3 а сила тока во вторичной обмотке
Если напряжения первичной и вторичной обмоток соответственно равны U1 = 127 в, U2 = 510 в, то при силе тока во вторичной обмотке I2 = 0,2 а в первичной обмотке сила тока будет примерно равна:
Таким образом, обмотка с более высоким напряжением имеет большее число витков и выполнена из провода с меньшим поперечным сечением, чем обмотка с более низким напряжением, так как сила тока в обмотке более высокого напряжения меньше силы тока в обмотке с более низким напряжением.
Источник
§ 3.13. Примеры решения задач
Задачи на материал данной главы имеют электротехническое содержание. Они подробно рассматриваются в курсах электротехники. Мы ограничимся рассмотрением нескольких простых задач, для решения которых необходимо знать формулу (3.2.2), выражающую зависимость между частотой ЭДС, наводимой в генераторе, частотой вращения ротора и числом пар полюсов в нем; формулу (3.3.10) коэффициента трансформации трансформатора и формулу (3.3.15) КПД трансформатора. Надо хорошо разбираться в схемах выпрямления переменного тока. Следует знать способы соединения обмоток в генераторе трехфазного тока, а также способы соединения потребителей энергии при их включении в цепь трехфазного тока. Необходимо усвоить соотношения между линейным и фазным напряжением при соединении обмоток генератора трехфазного тока звездой и треугольником [формулы (3.6.5) и (3.6.6)] и соотношения между линейными и фазными токами при включении потребителей трехфазного тока звездой и треугольником [формулы (3.7.1) и (3.7.4)]; формулу (3.7.6) мощности трехфазного тока. Надо уметь строить векторные диаграммы.
Задача 1
Первичная обмотка трансформатора находится под напряжением U1 = 220 В, сила тока в ней I1 = 0,55 А. Вторичная обмотка питает лампу накаливания. Напряжение на зажимах лампы U2 = 12 В, а сила тока I2 = 3,6 А. Коэффициент полезного действия трансформатора равен η = 0,65. Найдите сдвиг фаз φ1 между колебаниями силы тока и напряжения в первичной обмотке трансформатора.
Решение. Мощность, потребляемая первичной обмоткой трансформатора,
Мощность, отдаваемая трансформатором лампе (полезная мощность), равна:
Коэффициент полезного действия
Здесь cos φ2, так как лампа обладает только активным сопротивлением. Следовательно,
Задача 2
На какие пробивные напряжения должны быть рассчитаны конденсатор С и диод D, если выпрямитель (рис. 3.39) может работать как под нагрузкой, так и без нее?
Решение. В течение полупериода, когда лампа оказывается включенной в прямом направлении, конденсатор заряжается до амплитудного напряжения городской сети, равного 127√2 В = 180 В. Когда диод заперт (не проводит ток), он находится под напряжением сети (с амплитудой 180 В) и напряжением заряженного конденсатора (тоже равного 180 В). Изменение потенциала вдоль цепи в этот момент времени изображено на рисунке 3.40.
Если выпрямитель работает без нагрузки, то конденсатор должен рассчитываться на пробивное напряжение, не меньшее 180 В, а диод — на напряжение, не меньшее 360 В.
Задача 3
Фазное напряжение генератора трехфазного тока Uф = 125 В. Потребитель энергии включен звездой. Все его фазы обладают активными сопротивлениями: RA = RB = 2,5 Ом, RC = 25 Ом. Определите силу тока в нейтральном проводе.
Решение. Согласно закону Ома
Силу тока в нулевом проводе найдем графическим методом.
На рисунке 3.41, а построены векторы фазных напряжений и фазных сил токов (векторы фазных сил токов и векторы соответствуюш;их фазных напряжений совпадают по направлению, так как нагрузка каждой фазы активная).
Складывая векторы сил фазных токов (рис. 3.41, б), получим силу тока в нейтральном проводе IO = 5 А. Сила тока в нулевом проводе отстает по фазе от напряжения UA на угол φ = 60°.
Задача 4
К трехфазной сети трехфазного тока (рис. 3.42) с напряжением Uл = 120 В присоединены потребители энергии, имеющие сопротивления RAB = 10 Ом, RBC = RCA = 20 Ом. Определите, под каким напряжением будут находиться потребители при перегорании предохранителя в проводе В.
Решение. При перегорании предохранителя потребители АВ и ВС окажутся соединенными последовательно и включенными на линейное напряжение Uл = 120 В. Силы токов IAB и IBC равны:
Напряжения на зажимах потребителей:
Задача 5
Двухпроводная линия электропередачи может работать при двух различных напряжениях генератора U1 и U2 и противлениях нагрузки R1 и R2. Отношение потерь мощности на подводящих проводах для этих случаев равно α. Определите отношение напряжений U1/U2 при условии, что мощность, отдаваемая генератором, в обоих случаях одинакова.
Решение. Сопротивление подводящих проводов Rпр в обоих случаях одно и то же. Мощность, теряемая в проводах,
где I — сила тока в цепи. Отношение потерь мощности:
Полная мощность, отдаваемая генератором, равна:
По условию задачи в обоих случаях генератор отдает одну и ту же мощность:
Подставляя выражение для отнопхения сопротивлений (3.13.2) в уравнение (3.13.1) получим:
Следовательно,
Упражнение 3
1. С какой частотой должен вращаться ротор генератора, чтобы частота вырабатываемого переменного тока была 50 Гц, если число пар полюсов равно 3; 4; 6; 10? С какой частотой вращаются роторы генераторов на Волжской ГЭС, если число пар полюсов в этих генераторах равно 44?
2. Чтобы узнать, сколько витков содержат первичная и вторичная обмотки трансформатора, не вскрывая катушек, поверх вторичной обмотки намотали 60 витков провода. После включения первичной обмотки в сеть с напряжением 124 В* при помощи вольтметра обнаружили, что на концах обмотки с 60 витками имеется напряжение 16 В, а на концах вторичной обмотки — напряжение 40 В. Сколько витков содержится в первичной обмотке и сколько во вторичной?
3. Вторичная обмотка трансформатора, имеющая N2 = 100 витков, пронизывается магнитным потоком, изменяющимся со временем по закону Ф = 0,01 cos 314t (в единицах СИ). Определите зависимость ЭДС индукции во вторичной обмотке от времени и найдите действующее значение этой ЭДС.
4. От середины катушки с железным сердечником (обмотка — толстый медный провод с большим числом витков) сделан отвод С (рис. 3.43). Один раз между точками Б и С включен источник постоянного напряжения U1. Другой раз к этим точкам приложено переменное напряжение с амплитудой U1. Найдите напряжение U2 между точками А и В в первом случае и амплитуду переменного напряжения U’0 между точками А и В во втором случае.
5. Первичная обмотка понижающего трансформатора с коэффициентом трансформации К = 10 включена в сеть переменного тока с напряжением U1 = 220 В. Сопротивление вторичной обмотки r =1,2 Ом. Сила тока во вторичной цепи I2 = 5 А. Определите сопротивление R нагрузки трансформатора и напряжение U2 на зажимах вторичной обмотки. Потерями в первичной цепи пренебречь.
6. Обмотка лабораторного регулировочного автотрансформатора (ЛАТР) намотана на железном сердечнике, имеющем форму прямоугольного тороида (рис. 3.44).
Для защиты от вихревых токов (токов Фуко) сердечник набирают из тонких железных пластин, изолированных друг от друга слоем лака. Это можно сделать различными способами: 1) набирая сердечник из тонких колец, положенных стопкой одно на другое; 2) свертывая в рулон длинную ленту, имеющую ширину h; 3) собирая сердечник из прямоугольных пластин размером l х h (см. рис. 3.44). Какой способ лучше?
7. Амплитудные значения ЭДС в каждой из обмоток генератора трехфазного тока равны 310 В. Каковы мгновенные значения каждой ЭДС в момент, когда фаза первой ЭДС равна π/б?
8. В генераторе трехфазного тока в каждой фазной обмотке статора индуцируется ЭДС с амплитудным значением, равным 5400 В. Обмотки генератора соединены звездой. Определите действующие значения фазного и линейного напряжений.
9. В паспорте двигателя трехфазного тока в числе прочих сведений написано: «Δ/ 220/380*. Что означает эта запись? Как надо соединить обмотки этого двигателя при включении его в сеть с линейным напряжением 220 В; 380 В? Как будет работать двигатель, если в каждом из этих случаев осуществить (по ошибке) не то соединение?
10. На щитках генераторов, трансформаторов, двигателей трехфазного тока клеммы шести выводных проводов трехфазных обмоток располагаются в порядке, указанном на рисунке 3.45. Буквами А и X, В и У, С и Z обозначены начала и концы соответственно 1, 2 и 3-й фазных обмоток. Какие удобства при переключении с треугольника на звезду и обратно дает такое расположение клемм на щитке? Покажите на рисунках соединения звездой и треугольником.
11. Почему при пуске асинхронного трехфазного электродвигателя иногда его включают в сеть трехфазного тока сначала на звезду, а когда двигатель наберет достаточное число оборотов, его переключают на треугольник? Нарисуйте схему такого переключения.
12. Магнитное поле с индукцией вращается в плоскости чертежа с угловой скоростью ω. В этом поле находится рамка, стороны которой равны а и b. Активное сопротивление рамки R. Нормаль к плоскости рамки вращается в плоскости чертежа с угловой скоростью Ω. (рис. 3.46). Найдите силу тока, индуцированного в рамке.
13. Найдите момент сил, приложенных к рамке (см. задачу 12).
14. В трехфазном трансформаторе число витков на фазу первичной обмотки N1 = 2080, вторичной — N2 = 80. Первичное линейное напряжение U1 = 3300 В. Определите вторичные линейные напряжения, коэффициенты трансформации фазных и линейных напряжений при следующих соединениях обмоток: а) /
; б)
/Δ; в) Δ/
; г) Δ/Δ.
15. По двухпроводной линии от электростанции к потребителю необходимо передать электрическую мощность Р = 66 кВт. Один раз эта мощность была передана при напряжении 2200 В, другой раз — при напряжении 22 000 В. Сопротивление линии R = 4 Ом. Определите, сколько процентов составляет мощность, теряемая в проводах ЛЭП, от переданной мощности в обоих случаях.
16. Найдите мощность, теряемую в проводах, идущих от станции к потребителю, при следующих данных: передаваемая мощность Р = 100 кВт, напряжение на станции U = 220 В, сопротивление проводов R = 0,05 Ом, сдвиг фаз мегкду током и напряжением φ = 30°.
17. При передаче электроэнергии на большое расстояние используется повышающий трансформатор, нагруженный до номинальной мощности Р = 1000 кВт. При этом ежесуточная потеря энергии на линии электропередачи составляет ΔWп = 215 кВт • ч. Во сколько раз необходимо повысить выходное напряжение, чтобы при передаче электроэнергии потери не превышали 0,1%?
18. На первичную обмотку трансформатора подается напряжение 3600 В. Вторичная обмотка питает потребителя мощностью 25 кВт при напряжении 220 В и cos φ = 1. Определите сопротивление подводящих проводов, если коэффициент трансформации равен 15.
19. Какова мощность гидроэлектростанции, если плотина поднимает уровень воды на 100 м и расход воды составляет 540 м^/с 3 КПД станции 94%.
* Здесь и далее даются действующие значения напряжения и силы тока.
Источник
ГДЗ по физике за 10-11 класс к задачнику «Физика. 10-11 класс. Пособие для учебных заведений» Рымкевич А.П.
ГЛАВА XII. ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. 44. Переменный ток
ГЛАВА XII. ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. 44. Переменный ток
- № 951. Частоту вращения проволочной рамки в однородном магнитном поле увеличили в 3 раза. Во сколько раз изменится частота переменного тока в рамке и ЭДС индукции?
- № 952. Рамка площадью 200 см2 вращается с частотой 8 с-1 в магнитном поле индукцией 0,4 Тл. Написать уравнения Ф = Ф(t) и е = e(t), если при t = 0 нормаль к плоскости рамки перпендикулярна линиям индукции поля. Найти амплитуду ЭДС индукции.
- № 953. При вращении проволочной рамки в однородном магнитном поле пронизывающий рамку магнитный поток изменяется в зависимости от времени по закону Ф = = 0,01 sin 10πt. Вычислив производную Ф’, написать формулу зависимости ЭДС от времени е = e(t). В ка
- № 954(н). При каком значении напряжения на конденсаторе колебательного контура (в долях амплитудного значения u/Um) и через какое время (в долях периода t/T) энергия электрического поля впервые будет в 3 раза больше энергии магнитного поля?
- № 954. Сколько витков имеет рамка площадью 500 см2, если при вращении ее с частотой 20 с-1 в однородном магнитном поле индукцией 0,1 Тл амплитудное значение ЭДС равно 63 В?
- № 955(н). Найти период Т и частоту ν колебаний в контуре, состоящем из конденсатора емкостью С = 800 пФ и катушки индуктивностью L = 2 мкГн. Во сколько раз изменится период колебаний, если в конденсатор ввести диэлектрик с диэлектрической проницаемость
- № 955. Какую траекторию опишет электрон, пролетая между пластинами плоского конденсатора, на которые подано: а) постоянное напряжение; б) переменное напряжение достаточно высокой частоты?
- № 956. Будет ли проходить ток через электролитическую ванну с раствором медного купороса, если ее подключить к источнику переменного напряжения? Будет ли выделяться на электродах медь?
- № 957. По графику (рис. 106) найти амплитудное значение переменной ЭДС, ее период и частоту. Записать формулу изменения ЭДС со временем.
- № 958. По графику (рис. 106) найти амплитудное значение переменной ЭДС, ее период и частоту. Записать формулу изменения ЭДС со временем.
- № 959.
- № 960. На какое напряжение надо рассчитывать изоляторы линии передачи, если действующее напряжение 430 кВ?
- № 961. Написать уравнения зависимости напряжения и силы тока от времени для электроплитки сопротивлением 50 Ом, включенной в сеть переменного тока с частотой 50 Гц и напряжением 220 В.
- № 962. При каких фазах в пределах одного периода мгновенное значение напряжения равно по модулю половине амплитудного?
- № 963. Неоновая лампа начинает светить, когда напряжение на ее электродах достигает строго определенного значения. Какую часть периода будет светить лампа, если ее включить в сеть, действующее значение напряжения в которой равно этому напряжению? Считать,
- № 964. Конденсатор переменной емкости включен в цепь последовательно с лампочкой от карманного фонаря. Схема питается от генератора звуковой частоты ЗГ1. Как изменяется накал лампочки, если: а) не меняя емкости конденсатора, увеличивать частоту переменног
- № 965. Каково сопротивление конденсатора емкостью 4 мкФ в цепях с частотой переменного тока 50 и 400 Гц?
- № 966. Конденсатор включен в цепь переменного тока стандартной частоты. Напряжение в сети 220 В. Сила тока в цепи этого конденсатора 2,5 А. Какова емкость конденсатора?
- № 967. Последовательно с лампочкой карманного фонаря к ЗГ подключена катушка. Как изменится накал лампочки, если: а) не меняя частоту, поместить в катушку железный сердечник; б) уменьшить частоту?
- № 968. Каково индуктивное сопротивление катушки индуктивностью 0,2 Гн при частоте тока 50 Гц? 400 Гц?
- № 969. Катушка с ничтожно малым активным сопротивлением включена в цепь переменного тока с частотой 50 Гц. При напряжении 125 В сила тока равна 2,5 А. Какова индуктивность катушки?
- № 969(н). Ток в цепи меняется по гармоническому закону. Мгновенное значение силы тока для фазы π/6 равно 6 А. Определить амплитудное и действующее значения силы тока.
- № 970. Лампы (рис. 107) питаются от ЗГ. При некоторой частоте накал ламп одинаков. Как изменится их накал, если частоту: а) увеличить; б) уменьшить?
- № 971. Цепи, изображенные на рисунке 108, питаются сначала от источника постоянного тока, а затем от источника переменного тока, причем действующее значение переменного напряжения равно напряжению на полюсах источника постоянного тока. Как при этом изменя
- № 972. В цепь переменного тока с частотой 400 Гц включена катушка индуктивностью 0,1 Гн. Конденсатор какой емкости надо включить в эту цепь, чтобы осуществился резонанс?
- № 973.
- № 974. Почему турбогенераторы, вырабатывающие ток стандартной частоты (50 Гц), имеют, как правило, одну пару полюсов, а гидрогенераторы — во много раз больше?
- № 975. Допустимо ли, сняв катушку школьного трансформатора с сердечника, подавать на нее переменное напряжение, указанное на катушке?
- № 976. Трансформатор, содержащий в первичной обмотке 840 витков, повышает напряжение с 220 до 660 В. Каков коэффициент трансформации? Сколько витков во вторичной обмотке? В какой обмотке провод имеет большую площадь поперечного сечения?
- № 977. Чтобы узнать, сколько витков содержится в первичной и вторичной обмотках трансформатора, на вторичную катушку намотали 11 витков провода. При включении первичной обмотки в сеть напряжением 220 В вольтметр показал, что на обмотке с 11 витками напряж
- № 978. Понижающий трансформатор с коэффициентом трансформации, равным 10, включен в сеть напряжением 220 В. Каково напряжение на выходе трансформатора, если сопротивление вторичной обмотки 0,2 Ом, а сопротивление полезной нагрузки 2 Ом?
- № 979. Трансформатор включен в сеть (рис. 109). Как изменятся показания приборов при увеличении полезной нагрузки (уменьшении сопротивления R резистора)?
- № 980. Вторичная обмотка трансформатора, имеющая 99 витков, пронизывается магнитным потоком, изменяющимся со временем по закону Ф = 0,01 sin 100πt. Написать формулу зависимости ЭДС во вторичной обмотке от времени и найти действующее значение этой ЭДС.
- № 983(н). В цепь включены конденсатор емкостью 2 мкФ и катушка индуктивностью 0,005 Гн. При какой частоте тока в этой цепи будет резонанс?
- № 991(н). Трансформатор включен в сеть с переменным напряжением U1= 220 В. Напряжение на зажимах вторичной обмотки U2 = 20 В, ее сопротивление r = 1 Ом, сила тока во вторичной обмотке I2 = 2 А. Найти коэффициент трансформации и КПД трансформатора, пренебр
Выделите её мышкой и нажмите CTRL + ENTER
Большое спасибо всем, кто помогает делать сайт лучше! =)
Нажмите на значок глаза возле рекламного блока, и блоки станут менее заметны. Работает до перезагрузки страницы.
Источник
Решение задач по теме «Переменный ток»
Решение задач по теме «Переменный ток»
1. В сеть переменного тока с действующим напряжением 220 В включено активное сопротивление 55 Ом. Определить действующее и амплитудное значение силы тока.
Действующее значение силы тока . Амплитудное значение силы тока связано с действующим соотношением
.
2.В подводящих ветвях текут: а) постоянный; б) переменный ток (см. рис.). Какой ток будет в ветвях в случае а? В случае б)?
В случае постоянного тока ток будет течь в ветви, где есть катушка индуктивности и резистор. Тока в ветви конденсатора не будет.
В случае б) ток будет во всех ветвях.
3.Найти период переменного тока, для которого конденсатор ёмкостью 2 мкФ представляет сопротивление 20 Ом.
Так как емкостное сопротивление равно
а период Т связан с частотой соотношением
Выразим отсюда период Т
4.Определить действующие значения токов для зависимостей , представленных на графиках.
1.Определим количество теплоты, выделяющееся на сопротивлении R за период колебаний
Таким образом, в этом случае действующее значение тока . Результат очевиден, если понимать, что количество теплоты, выделяемое на активном сопротивлении не зависит от направления тока.
2. Определим количество теплоты, выделяющееся на сопротивлении R за период колебаний
Таким образом, действующее значение силы тока равно
3. Определим количество теплоты, выделяющееся на сопротивлении R за период колебаний
Следовательно, действующее значение силы тока равно
5. Неоновая лампа включена в сеть переменного тока с эффективным напряжением VЭ=71 В и периодом T=(1/50)с. Найти промежуток времени , в течение которого длится вспышка лампы, и частоту вспышек лампы n. Напряжение зажигания лампы VЗ=86,7 В считать равным напряжению гашения VГ.
В сети с эффективным напряжением VЭ амплитуда напряжения . Принимая начальную фазу напряжения равной нулю, запишем закон изменения напряжения с течением времени:
Зажигания (гашения) лампы происходят в моменты времени , когда мгновенное напряжение в сети равно напряжению зажигания (см. рисунок):
Наименьшее положительное значение, которое может иметь величина , стоящая под знаком синуса, составляет . В общем случае
где m=0,1,2,… Следовательно,
Знак плюс здесь соответствует моментам зажигания лампы (напряжение в эти моменты возрастает по модулю), а знак минус – моментам гашения лампы (напряжение убывает по модулю). В частности, первая вспышка происходит при и первое гашение – при . Таким образом, длительность вспышки мс.
Вспышки и гашения происходят в течение каждой половины периода; следовательно, частота вспышек .
6. В цепь последовательно включены резистор с сопротивлением R, конденсатор с емкостью C и катушка с индуктивностью L. По цепи протекает переменный ток . Определите амплитуды напряжения на каждом из элементов цепи и во всей цепи. По какому закону изменяется приложенное к цепи напряжение?
Амплитуда напряжения на резисторе ; амплитуда напряжения на конденсаторе ; амплитуда напряжения на катушке . Здесь — емкостное сопротивление, — индуктивное сопротивление.
Казалось бы, при последовательном соединении . Но это не так, потому что в цепи переменного тока мгновенные значения напряжения на отдельных элементах – это функции времени, а не постоянные величины! По существу речь идет о сложении гармонических колебаний. При этом очень важно, что фазы трех складываемых гармонических колебаний различны: совпадает по фазе с силой тока,
отстает от тока на , опережает ток на . Запишем закон изменения каждого из напряжений:
Мгновенное значение приложенного к цепи напряжения
Итак, при сложении мгновенных значений периодически изменяющихся величин (в данном случае — напряжений) их амплитуды не всегда складываются. Выражение (1) можно записать в виде , где амплитуда напряжения во всей цепи . Выведенное здесь соотношение обычно записывают в виде и называют законом Ома для цепи переменного тока, а величину Z – полным сопротивлением цепи переменного тока. Величина характеризует сдвиг фаз между колебаниями силы тока и напряжения в цепи. Ее можно записать в виде . Полезно также иметь в виду, что .
7. В цепь переменного тока включены последовательно резистор с сопротивлением R, конденсатор с емкостью C и катушка с индуктивностью L. Амплитуда силы тока в цепи равна . Определите среднюю мощность P, потребляемую за период каждым из элементов цепи. Конденсатор и катушку считайте идеальными.
Мгновенная (т. е. средняя за очень малый промежуток времени) мощность на любом участке цепи , где u, i – мгновенные значения напряжения и силы тока. Если , то напряжение на резисторе изменяется по закону , на конденсаторе , а на катушке . При нахождении средних значений произведений ui воспользуемся тем, что
(черта сверху означает здесь усреднение за время, равное периоду колебаний). Тогда , где — действующее значение силы тока;
Таким образом, конденсатор и катушка в среднем не потребляют энергии (напомним, что речь идет об идеализированных элементах цепи, не обладающих активным сопротивлением). Конденсатор четверть периода заряжается, запасая энергию электрического поля , но следующую четверть периода он разряжается, полностью возвращая энергию в цепь. При возрастании силы тока в катушке, т. е. также в течение четверти периода, она запасает энергию магнитного поля , однако за следующую четверть периода эта энергия также полностью возвращается в цепь. Только в резисторе (элементе цепи, обладающем активным сопротивлением) происходит необратимое превращение электрической энергии во внутреннюю.
Ответ: , где ; .
8. В цепи переменного тока (см. рисунок) показания первого и второго вольтметров В и В. Каково показание третьего вольтметра?
Разумеется, из-за сдвига фаз между напряжениями на различных участках цепи . Вольтметры переменного тока показывают действующие значения соответствующих напряжений. Значит, амплитуда напряжения на конденсаторе , а амплитуда напряжения на резисторе . Если сила тока в цепи изменяется по закону , то
Следовательно, полное напряжение в цепи равно .
Итак, . Третий вольтметр показывает действующее значение полного напряжения В.
9. Два одинаковых идеальных трансформатора имеют обмотки из и витков. Они соединены последовательно различными обмотками (см. рисунок) и подключены к источнику переменного напряжения В. Определите напряжение между точками A и C.
Напряжение равно сумме напряжений на выходе каждого из трансформаторов (поскольку и совпадают по фазе). Эти напряжения можно выразить через напряжения и на выходе трансформаторов:
Итак, задача свелась к определению и . Пренебрегая активным сопротивлением обмоток трансформаторов, можно записать силу тока I в первичных обмотках в виде ( — индуктивность катушки с числом витков ). Тогда
Для катушек, отличающихся только числом витков, . Поэтому
Интересно, что при любых значениях и получаем , причем равенство достигается лишь при . Это следует из неравенства .
Источник