Меню

Оос по току оос по напряжению

Типовой усилительный каскад на биполярном транзисторе по схеме с ОЭ и его анализ: Использование ООС по напряжению

При описании методов стабилизации рабочей точки по постоянному току мы сталкивались с еще одним возможным способом реализации обратной связи в схеме с ОЭ. Это отрицательная обратная связь по выходному напряжению (см. схемы на рис. 3.22, 3.23). Теперь мы можем проанализировать влияние и этого вида ООС на характеристики усилительного каскада с ОЭ для переменных токов и напряжений. Расчеты произведем для схемы, представленной на рис. 5.5.

Усилительный каскад по схеме с ОЭ с цепью ООС по напряжению

Рис. 5.5. Усилительный каскад по схеме с ОЭ с цепью ООС по напряжению

Эквивалентная схема рассматриваемого каскада для переменных составляющих токов и напряжений дана на рис. 5.6. Единственное ее отличие от эквивалентной схемы с рис. 5.2 состоит в наличии дополнительной цепи, образованной резистором RООС. Заметим также, что роль источника входного сигнала здесь играет эквивалентный генератор тока. Это сделано для упрощения расчетов (мы можем совершенно произвольно менять форму эквивалентного представления источника сигнала — в виде генератора напряжения или в виде генератора тока; выходной импеданс такого источника в первом случае отражается резистором \(R_Г\), а во втором — проводимостью \(G_Г = 1/R_Г\)).

Эквивалентная схема каскада по схеме с ОЭ с цепью ООС по напряжению

Рис. 5.6. Эквивалентная схема каскада по схеме с ОЭ

Вообще говоря, полный анализ схемы на рис. 5.6 — занятие довольно трудоемкое. Тем более, для практического применения важен не сам порядок анализа, а получаемые в результате формулы и те выводы, которые мы можем сделать на основании данных формул. Поэтому далее мы постараемся быть максимально краткими и не утомлять читателя математико-физической подоплекой приводимых соотношений.

Входное сопротивление (\(R_<вх>\)). Очевидно, что входное сопротивление схемы с цепью ООС по напряжению будет меньше, чем в схеме на рис. 5.2. Здесь оно определяется следующей формулой:

\( R_ <вх>= \left( R_Б || r_ <вх>\right) || \left[ R_ <ООС>+ R_ <К 2>|| \left( R_ <К 1>+ R_Н \right) \right]\), (5.8)

где \(r_<вх>\) — входное сопротивление транзистора.

Заметим, что первая скобка в выражении (5.8) представляет собой входное сопротивление каскада без цепи ООС по напряжению. Величина \(r_ <вх>\approx r_б + \left( 1 + \beta \right) \left( r_э + R_Э \right) \) не изменяется и продолжает соответствовать формуле (5.1) для входного сопротивления транзистора в схеме с ОЭ по рис. 5.1.

Выходное сопротивление (\(R_<вых>\)) схемы на рис. 5.6, с учетом допущений \(r_к^* \gg R_ <К 1>+ R_<К 2>\) и \(R_ <ООС>\gg R_<К 1>\), определяется соотношением:

\( R_ <вых>\approx \left( R_ <К 1>+ R_ <К 2>\right) || r_к^* \approx r_К^* \), (5.9)

которое идентично формуле (5.2) для выходного сопротивления каскада с рис. 5.1.

Коэффициент усиления по току (\(_\sim\)). Для вычисления коэффициента усиления по току необходимо выписать основные уравнения, связывающие между собой токи в различных звеньях схемы на рис. 5.6. Вот эти уравнения (здесь и далее везде будем предполагать \(R_Г \to \infty\), т.е. \(I_Г \approx 0\)) :

Решив представленную систему уравнений относительно неизвестных токов и воспользовавшись соотношением

мы получим следующее выражение для коэффициента усиления по току:

\( = \cfrac R_ <ООС>+ R_ <К 1>\left( R_ <К 2>+ R_ <ООС>\right) \right) \beta — r_ <вх>R_ <К 1>\right] > <\left( r_<вх>+ R_Б \right) \left[ R_ <ООС>\left( R_ <К 2>+ R_Н \right) + R_ <К 1>\left( R_ <К 2>+ R_Н + R_ <ООС>\right) \right] + A > \), (5.10)

где: \( A = R_Б \left[ r_ <вх>\left( R_ <К 1>+ R_ <К 2>+ R_Н \right) + R_ <К 1>R_Н \beta \right] \).

Судить о влиянии цепи ООС по напряжению на коэффициент усиления по формуле (5.10) довольно сложно. Поэтому на рис. 5.7 представлены графики, отражающие отношение коэффициента усиления по току при наличии цепи ООС по напряжению к коэффициенту усиления этой же схемы при разомкнутой цепи ООС. Графики даны для различных условий включения резистора обратной связи в коллекторную цепь транзистора, но при постоянстве параметров этой цепи (неизменная величина суммарного сопротивления в цепи коллектора). Из этих графиков сразу становится видно, что даже при очень незначительной глубине ООС усиление каскада падает довольно заметно. Здесь следует понимать, что конкретные цифры, которые мы наблюдаем в данных графиках, присущи некоторому конкретному усилительному каскаду; в общем случае мы можем говорить только о том, что налицо тенденция экспоненциального падения коэффициента усиления по току при увеличении глубины ООС по напряжению.

Зависимость коэффициента усиления по току для схемы на рис. 5.6 от глубины ООС по напряжению

Рис. 5.7. Зависимость коэффициента усиления по току для схемы на рис. 5.6 от глубины ООС по напряжению

Коэффициент усиления по напряжению (\(_\sim\)). Выражение для коэффициента усиления по напряжению может быть найдено из соотношения:

Напомним, что \(_\sim\) и \(_\sim\) находятся при решении системы уравнений, которая была составлена для нахождении коэффициента усиления по току. В итоге всех подстановок получаем следующее выражение:

\( _\sim = \cfrac \left( R_ <К 1>+ R_ <К 2>\right) + R_ <К 1>\left( \beta R_ <К 2>— r_ <вх>\right) \right]> \left[ R_ <ООС>\left( R_ <К 1>+ R_ <К 2>+ R_Н \right) + R_ <К 1>\left( R_ <К 2>+ R_Н \right) \right]> \approx \)

\( \approx \beta \cfrac + R_ <К 2>\right)> \left( R_ <К 1>+ R_ <К 2>+ R_Н \right)> \). (5.11)

Из данной формулы сразу видно, что коэффициент усиления по напряжению схемы с отрицательной обратной связью по напряжению приблизительно равен коэффициенту усиления этой же схемы при разомкнутой цепи ООС (такой результат можно было бы получить и из теории обратной связи). В действительности \(_\sim\) также падает при увеличении глубины ООС, но гораздо медленнее \(_\sim\). На рис. 5.7 для сравнения пунктиром показана кривая относительного изменения \(_\sim\) для случая \(R_ <К 2>= 0\).

Коэффициент усиления по мощности (\(_\sim\)) находится перемножением соотношений (5.10) и (5.11).

Итак, теперь мы имеем достаточно подробное представление о том, как влияет на характеристики каскада с ОЭ цепь ООС по напряжению. Опираясь на это знание, можно сделать ряд важных выводов относительно целесообразности использования данного вида обратной связи в усилителях.

Во-первых, напомним читателю, что в схеме на рис. 5.5 степень влияния ООС по напряжению на стабильность рабочей точки транзистора по постоянному току несколько ниже, чем в случае ООС по току нагрузки, т.е. для температурной стабилизации лучше подходит именно ООС по току. Далее сравним воздействия разных видов ООС на передаточные и иные характеристики каскада в рабочей полосе частот. И в том, и в другом случае наблюдается заметное падение коэффициента усиления по мощности, а также уменьшение уровня линейных и нелинейных искажений. Однако при ООС по току заметно падает коэффициент усиления по напряжению, а коэффициент усиления по току практически не меняется. При ООС по напряжению, наоборот, происходит уменьшение коэффициента усиления по току при более или менее стабильном коэффициенте усиления по напряжению. Данная особенность обычно и предопределяет целесообразность использования того или иного вида ООС в конкретных усилительных каскадах. Например, если нагрузкой каскада является следующий аналогичный усилительный каскад с относительно высоким входным сопротивлением, а амплитуда переменного напряжения на входе далека от предельно допустимой для режима линейного усиления транзистора, то целесообразным оказывается поддержание высокого коэффициента усиления по напряжению, т.е. умеренная ООС по напряжению в таких каскадах более предпочтительна, чем ООС по току. А вот в каскадах, нагружаемых на низкоомную нагрузку, или когда напряжения переменного сигнала уже близки к предельно допустимым значениям, лучшим выбором является использование ООС по току, которая не воздействует на коэффициент усиления по току. На практике предпочтение все-таки обычно отдается ООС по току как более удобной (мы можем очень легко регулировать глубину ООС в рабочем диапазоне частот, не влияя на ее параметры по постоянному току), но при построении многокаскадных усилителей может встречаться чередование видов внутрикаскадной ООС.

Как было показано выше, устранить или скорректировать влияние ООС по току в рабочем диапазоне частот усилительного каскада довольно легко, зашунтировав эмиттерный резистор блокировочным конденсатором. Похожим образом мы можем управлять и влиянием ООС по напряжению. Простейший пример с одним блокировочным конденсатором в цепи ООС уже был дан на рис. 3.24. Заметим, что при таком включении мы, хоть и незначительно, но шунтируем выходную цепь каскада. При построении высокочастотных усилителей можно дополнительно использовать индуктивность, как показано на рис. 5.8. Такая индуктивность должна обладать очень высоким эквивалентным сопротивлением на рабочей частоте сигнала (а конденсатор \(C1\) — очень маленьким), тогда шунтирование входной цепи не проявляется. Мы можем включить аналогичную индуктивность и с другой стороны от сопротивления \(R_<ООС>\) для предотвращения шунтирования выходной цепи. Беда, правда, в том, что ООС по напряжению часто применяется именно в низкочастотных усилителях, а в них использование индуктивностей не всегда рационально.

Блокирующая индуктивность в цепи ООС по напряжению

Рис. 5.8. Блокирующая индуктивность в цепи ООС по напряжению

Вообще, так же, как и в случае с ООС по току, мы можем включать в цепь ООС по напряжению самые разнообразные звенья, корректирующие вид АЧХ усилителя. Необходимо только следить за тем, чтобы отрицательная обратная связь во всем частотном диапазоне продолжала оставаться именно отрицательной. Если же на некоторых частотах (пусть даже вне полосы пропускания) она станет положительной обратной связью, то возможны потеря устойчивости и самовозбуждение усилителя.

До сих пор мы рассматривали только виды обратных связей, естественным образом вносимые в каскад при формировании цепей смещения, обеспечивающих нужный режим работы по постоянному току. Однако на практике применяются и другие способы организации цепей обратной связи. С помощью таких специальных видов ОС осуществляют коррекцию частотных характеристик, добиваются повышения устойчивости и расширения динамического диапазона усилителя.

Источник

AudioKiller’s site

Audio, Hi-Fi, Hi-End. Электроника. Аудио.

  • Новости
  • Мои планы
  • For sale
  • FAQ
  • Задайте вопрос
  • Обо мне
  • Подписка на новости

Материалы раздела:

  • — Теория
    • Искажения первого периода синусоиды
    • Сравнительное прослушивание усилителей
    • Скин-эффект в аудио кабеле
    • Работа с осциллографом
    • Отрицательная обратная связь в усилителе
    • Насколько важно качество разводки печатных плат?
    • Регулирование выходного сопротивления усилителя посредством комбинированной отрицательной обратной связи
    • Биампинг в усилителе
    • Клиппинг (cliping) в усилителе
    • Применение корректора Линквица (Linkwitz transformator) для усиления басов
    • Компьютерное моделирование электронных схем
    • Распределение мощности в спектрах музыкальных сигналов
  • — Усилители
  • — Источники питания
  • — Акустические системы
  • — Другое
Читайте также:  Регулировка тока в зарядном устройстве для автомобиля

Отрицательная обратная связь в усилителе

Обратная связь – процесс передачи сигнала с выхода усилителя обратно на его вход, а также цепь, осуществляющая эту передачу.

Обратная связь (ОС) называется отрицательной (ООС, NFB), если выходной сигнал усилителя вычитается из входного. Для простоты будем рассматривать установившийся режим работы всей системы, причем усилитель работает в активном режиме (т.е. нормально усиливает сигнал без всяких там перегрузок).

Структурная схема усилителя, охваченного ООС, показана на рис.1.

Здесь некоторый «виртуальный» усилитель с коэффициентом усиления по напряжению Ku’ получается из исходного «реального» усилителя, имеющего коэффициент усиления Ku, и охваченного цепью ООС. На самом деле термин «виртуальный» не совсем корректен, но я буду пользоваться им, потому что с точки зрения внешних устройств, подключенных к системе в целом, она представляет собой усилитель с параметрами, отличающимися от параметров реального исходного усилителя без ООС.

С выхода реального усилителя напряжение передается на его вход через цепь ООС с коэффициентом передачи β:

Отрицательная обратная связь в усилителе

Обычно цепь ООС является пассивной, и β ≤ 1. Если цепь ООС усиливает, то это принципиально ничего не меняет, и все формулы в этом случае выводятся аналогично. Если β = 0, то это означает, что Uоос = 0 и обратная связь отсутствует. Обратите внимание, что совершенно безразлично, какую именно схему имеет цепь ООС. Главное – это насколько (во сколько раз) она ослабляет напряжение.

В данной системе присутствует два разных входных напряжения, и чтобы не путаться, я им дам различные наименования:

1. Напряжение, подаваемое на вход «виртуального» усилителя от источника сигнала. Его будем обозначать Uсигн.

2. Напряжение, приходящее на вход реального усилителя – Uвх.

Итак, выходное напряжение усилителя Uвых превращается цепью ООС в напряжение обратной связи Uоос и вычитается из входного напряжения. Результат – входное напряжение реального усилителя:

Отрицательная обратная связь в усилителе

Важный момент: Uоос всегда меньше Uсигн, поэтому Uвх всегда больше нуля.

Реальный усилитель усиливает свой входной сигнал в Ku раз:

Отрицательная обратная связь в усилителе

Преобразуем формулу (3):

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Но Uвых/Uсигн – это коэффициент усиления Ku’ «виртуального» усилителя, как он проявляется для внешнего мира, поэтому:

Отрицательная обратная связь в усилителе

Отрицательная обратная связь в усилителе

Таким образом, мы получили формулу для вычисления коэффициента усиления для усилителя, охваченного ООС.

Теперь можно объяснить, почему Uоос Uсигн, рассмотрите самостоятельно. С точки зрения математики, исходное утверждение доказывается элементарно:

Отрицательная обратная связь в усилителе

Рассматривая физику процессов, следует помнить, что выходное напряжение усилителя появляется не само по себе, а является следствием его усиления и образуется из его входного напряжения: Uвых = Ku∙Uвх.

Итак, при охвате усилителя ООС, его коэффициент усиления уменьшается в (1+β∙Ku) раз. Но введение ООС изменяет и другие параметры усилителя.

1. Отрицательная обратная связь изменяет в (1+β∙Ku) раз входное и выходное сопротивления усилителя. При этом они могут как увеличиваться, так и уменьшаться в зависимости от способа соединения цепи ООС со входом и выходом усилителя – последовательно или параллельно. Способы подключения цепи ООС ко входу усилителя показаны на рис. 2, а к выходу усилителя – на рис. 3.

Эти формулы несложно вывести, но мы это делать не будем, а будем пользоваться готовыми. И объяснить их с точки зрения схемотехники также несложно. Например, на рис. 2а, напряжение на входе усилителя после замыкания цепи ООС возросло в (1+β∙Ku) раз: Uсигн = Uвх∙(1+β∙Ku), а входной ток остался прежним. Значит, по закону Ома (R=U/I) и сопротивление возросло в (1+β∙Ku) раз.

При последовательной по выходу ООС через ее цепь проходит выходной ток усилителя (ток нагрузки), поэтому ее часто называют обратной связью по току. Несколько примеров разных включений цепи ООС показано на рис. 4 и рис. 5. Цепь ООС является четырехполюсником, который обычно замыкается через «землю» цепи, явным образом это показано на рис. 4б.

2. Отрицательная обратная связь расширяет частотный диапазон усилителя. Нижняя fн и верхняя граничные частоты увеличиваются примерно в (1+β∙Ku), если усилитель имеет спад АЧХ 6 дБ/октаву. На самом деле, при охвате усилителя ООС могут происходить самые разные процессы, вплоть до превращения усилителя в генератор, но если все работает, то частотный диапазон обязательно расширяется. Это иллюстрируют АЧХ исходного усилителя (синяя) и усилителя, охваченного ООС (красная) на рис. 6. Там же показаны границы частотного диапазона без ООС и с ней. Напоминаю, что граничной частотой считается такая частота, где коэффициент усиления уменьшается в корень из двух (примерно 1,41) раз.

Отрицательная обратная связь в усилителе

Рис. 6. Расширение частотного диапазона при помощи ООС.

3. Введение ООС уменьшает нелинейные искажения усилителя (коэффициент гармоник) примерно в (1+β∙Ku) раз. Это происходит оттого, что ООС линеаризует систему и уменьшает ее ошибки. Изменяется и амплитудная характеристика усилителя (рис.7), на ней плавный переход к области насыщения превращается в довольно острый излом – ООС линеаризует этот участок и «пытается» вытянуть пропорциональное усиление даже там, где оно уже начинает уменьшаться.

На самом деле (1+β∙Ku) – это очень приблизительная оценка, поскольку для анализа нелинейных цепей используется уже совсем другая математика и там все очень сильно зависит от нелинейности усилителя. Но, тем не менее, искажения усилителя снижаются тем сильнее, чем глубже ООС, и в «простых» случаях формула (1+β∙Ku) работает достаточно хорошо.

Итак, мы видим, что охват усилителя отрицательной обратной связью изменяет ряд его основных параметров в (1+β∙Ku) раз. Проанализируем это выражение сначала чисто математически, не вникая пока в его физический смысл. Очевидно, что тут возможны три варианта:

а) β∙Ku > 1. Тут обратная связь очень глубока. Интересно, что для очень глубокой ООС формула (4) превращается вот во что:

Отрицательная обратная связь в усилителе

То есть, свойства усилителя (коэффициент усиления и АЧХ) определяются исключительно параметрами цепи ООС. При значении β∙Ku = 100, погрешность применения вместо формулы (4) упрощенной формулы (5) составляет 1%, такой погрешностью в большинстве случаев можно пренебречь. А в реальных схемах на операционных усилителях величина β∙Ku может достигать десятков тысяч, делая погрешность «упрощения формулы» практически незначимой.

Обратите внимание, что в формуле присутствует величина β∙Ku, как произведение. При этом одинаковое значение этого произведения можно получить как при большой величине Ku и маленьком β, так и при большом β и небольшом Ku, так что в данном смысле эти два параметра равнозначны. Термин «глубина обратной связи» часто ассоциируется с термином «коэффициент передачи цепи ООС», который обозначает величину β, а хорошо было бы ввести некоторое понятие, отражающее именно величину β∙Ku, как более важную для применения. Так сейчас и поступим, только не забывайте, что у нас β ≤ 1, так что понятие большое или маленькое β означает, например, такие значения: β = 0,1 или β = 0,0001.

Теперь давайте оценим степень влияния отрицательной обратной связи, исходя из физического смысла и электроники. Обратимся к рис. 1. Внутри усилителя присутствует два напряжения: Uвх и Uоос. Очевидно, что степень влияния ООС на усилитель зависит от соотношения этих напряжений. Если Uоос > Uвх, то главную роль во входном сигнале «реального» усилителя играет именно ООС (т.к. Uсигн = Uоос + Uвх и значит входной сигнал «виртуального» усилителя практически равен Uоос). С другой стороны, Uоос получается из напряжения Uвх, после усиления его усилителем и ослабления цепью ООС. Как оно получается? Мысленно разомкнем петлю обратной связи в точке А (разрывать цепь электрически можно не всегда – иногда от этого изменяется величина β), рис. 8.

Со стороны точки приложения сигнала ООС (это точка А), входной сигнал проходит два элемента – усилитель и цепь ООС. Общий коэффициент передачи последовательно соединенных устройств равен произведению их коэффициентов передачи: Ku∙β. Эта величина является коэффициентом усиления сигнала в петле обратной связи и называется петлевым усилением:

Отрицательная обратная связь в усилителе

С другой стороны:

Отрицательная обратная связь в усилителе

Это то самое взаимоотношение между напряжением ООС и входным напряжением «реального» усилителя, которое показывает степень влияния обратной связи. Кроме того, оно полностью соответствует выражению, которое мы вывели, математически анализируя формулу коэффициента усиления усилителя с замкнутой ООС. Так что глубину обратной связи характеризует именно петлевое усиление, и именно его имеют ввиду, когда говорят о глубине ООС. Хотя иногда под глубиной ООС подразумевают коэффициент передачи цепи обратной связи β – в случаях, когда Ku велико, и величину A = β∙Ku определяет в основном β.

Таким образом, именно петлевое усиление определяет свойства усилителя, которые он проявляет для внешнего мира. Именно на эту величину изменяются коэффициент усиления, входное и выходное сопротивления, граничные частоты и коэффициент гармоник.

В некоторых случаях вычисление петлевого усиления по формуле (6) может быть затруднено, тогда можно найти его из изменения коэффициента усиления усилителя при охвате его ООС:

Отрицательная обратная связь в усилителе

Последнее выражение достаточно точно, при А≥100. Проще всего определять таким способом петлевое усиление по логарифмической АЧХ усилителя (диаграмме Боде). На рис. 9 петлевое усиление А = 100 – 60 = 40 дБ, т.е. 100 раз. На самом деле А = 100 – 1 = 99 раз (39,9 дБ), но этим зачастую можно пренебречь, поэтому обычно в таких случаях говорят, что петлевое усиление равно ровно 40 дБ.

расширение диапазона частот

Рис. 9. Определение глубины ООС по АЧХ.

Пока что я ничего не говорил о свойствах и схеме самой цепи ООС. На самом деле, значение ее коэффициента передачи не обязательно являются константой. Эта цепь может быть частотнозависимой, тогда величина β меняется с частотой. Такое свойственно современным усилителям сигналов, когда для постоянного тока стремятся получить стопроцентную обратную связь (β=1), дающую максимальную стабильность режима работы усилителя, а для переменного тока глубину ООС выбирают такой, чтобы Ku’ для него (усиливаемого сигнала) был равен 10…1000 (β≈0,1…0,001). На самом деле при снижении частоты f ниже определенного значения, β начинает расти, доходя до единицы при f = 0, т.е. на постоянном токе. Но это все происходит ниже рабочего диапазона частот усилителя, поэтому в таких случаях глубину ООС принято оценивать двумя значениями: для постоянного тока, и для переменного тока (в рабочем диапазоне частот).

Читайте также:  Полное сопротивление цепи переменному току зависит от

Если вернуться к формуле (5) для коэффициента усиления с замкнутой цепью ООС, то видно, что при достаточно большом значении петлевого усиления, свойства усилителя – это обратная величина от свойств цепи обратной связи. Такая ситуация лучше всего получается, если усилитель имеет очень большой коэффициент усиления без ООС – десятки-сотни тысяч и миллионы. Для работы в таких условиях созданы специальные микросхемы, называемые операционными усилителями (ОУ).

Понятие операционного усилителя появилось во второй половине ХХ века, когда получили широкое распространение аналоговые электронно-вычислительные машины (АВМ). Принцип их применения был основан на том, что подбиралась соответствующая электрическая цепь, описываемая теми же уравнениями, что и исследуемый неэлектрический процесс. Измеряя напряжения и токи в цепи, получали значения параметров исследуемого процесса. Для АВМ требовались блоки (функциональные узлы), выполняющие определенные математические операции: масштабирование (усиление), сложение, вычитание, интегрирование, дифференцирование и др. Довольно быстро пришли к выводу, что вместо того, чтобы разрабатывать каждый такой блок по-отдельности, проще получить их все из одинаковых усилителей, охваченных цепью ООС – так и появились ОУ. В настоящее время возможности цифровых вычислительных машин настолько велики, что моделирование (и управление) проще и точнее выполнять на них, и АВМ практически исчезли, а операционные усилители остались – они оказались очень удобными для применения, ведь из них можно получить практически любое устройство, всего лишь охватив их соответствующей ООС.

Так что получить, например, усилитель с нужной АЧХ достаточно просто, достаточно охватить его ООС, имеющей АЧХ «зеркальной» к требуемой (рис. 10).

Отрицательная обратная связь в усилителе

Рис. 10. Частотнозависимая ООС.

Схемы, реализующие данные АЧХ показаны на рис. 11.

Однако, конструируя схемы на операционных усилителях, следует помнить, что их огромный коэффициент усиления сохраняется только на очень низких частотах, а потом начинает падать со скоростью 20 дБ/декада. У большинства ОУ широкого применения спад АЧХ начинается с частоты порядка 10 Гц. Поэтому на частотах в десятки килогерц Ku может быть довольно мал, и при попытке получить на такой частоте большое усиление, глубина обратной связи (петлевое усиление) может оказаться слишком маленьким. При этом возрастет погрешность выполняемой функции, и повышаются нелинейные искажения. На рис. 12 показаны АЧХ усилителя (см. рис. 10 и рис. 11) без ООС и с ООС. На частотах 20 Гц, 1 кГц и 20 кГц глубина ООС (петлевое усиление) составляет 39 дБ, 24 дБ и 11 дБ соответственно. Вполне можно считать, что на частоте 20 кГц обратная связь имеет очень низкую глубину и практически не улучшает параметров усилителя.

Отрицательная обратная связь в усилителе

Рис. 12. Зависимость глубины ООС от частоты.

В заключение хотелось бы отметить, что это только элементарная теория обратной связи. Здесь, например, не учтен тот факт, что на переменном токе и коэффициент усиления «реального» усилителя, и коэффициент передачи цепи обратной связи обычно величины комплексные (петлевое усиление также является комплекным). Поэтому формула (4) верна только для модулей, а «на все случаи жизни» ее надо записывать так:

Отрицательная обратная связь в усилителе

При этом цепь ООС может изменять не только амплитуду сигнала, но и его фазу. Причем, если сдвиг фаз в петле ООС станет равным 180 градусам, то сигнал обратной связи будет не вычитаться из сигнала источника, а прибавляться к нему, и обратная связь из отрицательной превратится в положительную. Но это уже совсем другая история…

Главная цель этого материала – дать понимание основ обратной связи для дальнейшего углубленного ее изучения, тем более что физика и математика процессов показана совершенно правильно.

Готовлю продолжение о секретах применения отрицательной обратной связи.

Источник

Влияние ООС на входное и выходное сопротивления усилителя

Обратная связь оказывает существенное влияние на входное и выходное сопротивления усилителя.

Изменение входного сопротивления зависит от способа введения обратной связи во входную цепь и не зависит от способа снятия ее с выходной цепи.

Изменение выходного сопротивления зависит от способа снятия обратной связи с цепи выхода и не зависит от способа ее подачи во входную цепь.

Рассмотрим влияние различных видов ООС на входное сопротивление усилителя.

Для определения влияния последовательной обратной связи на входное сопротивление усилителя воспользуемся схемой, приведенной на рисунке 4. Анализ схемы показывает, что выражение для определения входного сопротивления усилителя с последовательной ООС будет иметь вид

Из последнего выражения следует, что при последовательной ООС входное сопротивление усилителя увеличивается в (1 + bK ) раз.

Однако входное сопротивление усилителя обычно имеет как активную (действительную), так и емкостную, или индуктивную (мнимую) составляющие, поэтому для полной оценки влияния ООС на входное сопротивление последнее необходимо записать в комплексном виде

Для определения влияния параллельной ООС на входное сопротивление усилителя используем схему, приведенную на рисунке 5. Анализ схемы показывает, что параллельная ООС уменьшает входное сопротивление усилительного устройства, так как при ней ко входному сопротивлению усилителя Rвх как бы присоединяется параллельно сопротивление Rсв.

Для количественной оценки влияния параллельной ООС на входное сопротивление усилителя используют выражение

Во всех приведенных формулах используется значение коэффициента усиления напряжения в диапазоне средних частот (то есть в полосе пропускания усилителя).

Для количественной оценки влияния ООС по напряжению на выходное сопротивление усилителя используют выражение

Из последнего выражения следует, что введение в устройство ООС по напряжению уменьшает выходное сопротивление в фактор связи раз.

Физический смысл действия ООС по напряжению заключается в следующем. Любая ООС стремится поддержать неизменным значение того параметра, который используется для получения обратной связи. Поэтому ООС по напряжению при действии внешних возмущений, в частности изменении выходного тока, стремится поддержать неизменным значение выходного напряжения усилителя. Это эквивалентно уменьшению его выходного сопротивления.

Оценка влияния ООС по току на выходное сопротивление электронного устройства осуществляется на основе выражения

Из выражения следует, что при ООС по току выходное сопротивление устройства увеличивается.

Ниже приведена таблица, в которой в сжатой форме показано влияние различных видов ООС на основные показатели усилителя.

Параметр Вид отрицательной обратной связи
Последоват. по напряжению Последоват. по току Параллельн. по напряжению Параллельн. по току
KU ¯ ¯ const const
KI const const ¯ ¯
Zвх ­ ­ ¯ ¯
Zвых ¯ ­ ¯ ­
стабилизация Uвых Iвых Uвых Iвых

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



3. УСИЛИТЕЛИ С ОБРАТНОЙ СВЯЗЬЮ

Обратная связь (ОС) находит широкое применение в разнообразных АЭУ, в т.ч. и в УУ. В УУ введение ОС призвано улучшить ряд основных показателей или придать новые специфические свойства. Особую, принципиальную роль ОС играет в микроэлектронных УУ. Можно утверждать, что без широкого использования ОС было бы крайне трудно осуществить серийный выпуск линейных ИМС.

Обратной связью называется передача части (или всей) энергии сигнала с выхода на вход устройства. Сниматься сигнал обратной связи может с выхода всего устройства или с какого-либо промежуточного каскада. ОС, охватывающую один каскад, принято называть местной, а охватывающую несколько каскадов или весь многокаскадный УУ — общей.

Структурная схема УУ с ОС приведена на рисунке 3.1.

Обычно коэффициент усиления УУ и коэффициент передачи цепи ОС носят комплексный характер, что указывает на возможность фазового сдвига в областях НЧ и ВЧ за счет наличия реактивных элементов как в самом УУ, так и в цепи ОС.

Коэффициент передачи цепи ОС равен:

Согласно классической теории ОС, влияние ОС на качественные показатели УУ определяются возвратной разностью (глубиной ОС):

где — определитель при равенстве нулю параметра прямой передачи. Равенство нулю этого параметра равносильно разрыву замкнутой петли передачи сигнала с сохранением нагружающих иммитансов в месте разрыва.

Следование классической теории ОС приводит к сложности вычислений, преодолимой только с помощью ЭВМ.

Для эскизных расчетов пригодна элементарная теория ОС [6]. Ее применение допустимо тогда, когда есть возможность разделения цепей прямой передачи и обратной передачи . В реальных УУ четкого разделения этих цепей невозможно, поэтому расчеты с помощью элементарной теории ОС приводят к погрешности результатов, впрочем, вполне допустимой для эскизного проектирования. Согласно элементарной теории ОС, глубина ОС определится как:

Если >0 — ОС носит положительный характер (ПОС), если 10) KRэкв/Rос. Из полученного выражения следует, что ПООСТ обеспечивает стабильность усиления по напряжению при условии постоянства нагрузки.

С помощью ПООСТ удается уменьшить нелинейные искажения в УУ, поскольку с увеличением F будет уменьшаться напряжение управления усилителем, его работа станет осуществляться на меньшем участке ВАХ активного элемента (транзистора), а это приведет к уменьшению коэффициента гармоник. В подразделе 8.1 приведены расчетные соотношения для коэффициента гармоник усилителя, охваченного ООС последовательного типа. Приближенно оценить влияние ПООСТ на коэффициент гармоник можно по соотношению:

Все вышесказанное в равной мере относится и к каскаду на БТ с ОЭ и ПООСТ (схема каскада не приводится ввиду идентичности ее топологии схеме рисунка 3.3).

Входное сопротивление усилителя с ООС определяется способом подачи напряжения ОС во входную цепь. Согласно элементарной теории ОС, ПООСТ увеличивает входное сопротивление усилителя в F раз, т.е.

Читайте также:  Usb type c максимальный ток

Выражение для входного сопротивления каскада с ОЭ на БТ с ПООСТ, определенное по методике подраздела 2.3, имеет вид:

При известных допущениях последние два выражения дают близкие результаты.

Входное сопротивление каскада с ОИ на ПТ определяется Rз (см. подраздел 2.9), поэтому практически не меняется при охвате каскада ПООСТ.

Выходное сопротивление усилителя с ООС определяется способом снятия напряжения ОС с нагрузки усилителя. Согласно элементарной теории ОС, ПООСТ увеличивает выходное сопротивление усилителя в F раз, т.е.

На СЧ выходное сопротивление каскадов на ПТ (ОИ) и БТ (ОЭ) определяется в большинстве случаев соответственно номиналами Rс и Rк, поэтому данная ООС его практически не меняет.

На рисунке 3.3б приведена схема каскада с ОИ и ПООСТ в области ВЧ. Данный каскад еще носит название каскада с истоковой коррекцией, т.к. основной целью введения в каскад ООС является коррекция АЧХ в области ВЧ.

Поскольку цепь ООС (RосCос) частотнозависима, то |F| с ростом частоты уменьшается относительно своего значения на СЧ, что приводит к относительному возрастанию |KОС| на ВЧ. С точки зрения коррекции временных характеристик, уменьшение tу каскада объясняется зарядом Cос, что приводит к медленному нарастанию Uос, и, следовательно, к увеличению коэффициента усиления в области МВ, а это, в свою очередь, сокращает время заряда Cн, которое, собственно, и определяет tу.

Анализ влияния ПООСТ вначале проведем для случая резистивной цепи ОС (Cос=0). Учитывая, что крутизна ПТ практически не зависит от частоты (см. подраздел 2.4.2), можно сказать, что во всем диапазоне рабочих частот глубина ООС F=const, уменьшение коэффициента усиления по всему диапазону рабочих часто одинаково и коррекция отсутствует.

Воспользовавшись рекомендациями подраздела 2.3,получим выражение для комплексного коэффициента передачи каскада с токовой коррекцией (цепь ОС комплексная, RосCос) на ВЧ:

Анализ полученного выражения упрощается в предположении τв=τОС. При этом условии имеем:

где τвОС=τв/F (см. так же подраздел 2.9).

Уменьшение постоянной времени каскада в области ВЧ приводит к увеличению верхней граничной частоты fв (уменьшению tу) каскада. Площадь усиления каскада с ОИ и истоковой коррекцией при этом не меняется:

Расчет каскада с истоковой коррекцией в области НЧ ничем не отличается от расчета некорректированного каскада за исключением того, что формула для постоянной времени цепи истока будет выглядеть иначе:

В зависимости от цели введения ООС в каскад, глубину ООС можно определить по следующим соотношениям:

F = K/KОС, либо F = fвОС/fв.

Каскад с ОЭ и ПООСТ еще носит название каскада с эмиттерной коррекцией.

В отличие от ПТ, в БТ крутизна частотнозависима, поэтому даже при частотно-независимой цепи ООС (Cос=0) наблюдается эффект коррекции АЧХ и ПХ за счет уменьшения глубины ООС на ВЧ:

,

где τвОС=τ/F1/F2 (см. так же подраздел 2.5).

Нетрудно увидеть, что эмиттерная коррекция каскада на БТ при частотно-независимой цепи ООС (Cос=0) эффективна при τ2 > 1) получаем:

Входное сопротивление усилителя с ∥ООСН определится как:

Величину выходного сопротивления УУ, охваченного ∥ООСН, можно приближенно оценить по уже известному соотношению:

Из изложенного следует, что ∥ООСН стабилизирует сквозной коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, уменьшает входное и выходное сопротивления усилителя.

Каскад на БТ с ОЭ и ∥ООСН представлен на рисунке 3.5.

Рисунок 3.5. Усилительный каскад на БТ с ОЭ и ∥ООСН

При ∥ООСН выходное напряжение каскада вызывает ток ОС, протекающий через цепь ОС RосLосCрос. Ранее (см. подраздел 2.6) рассматривалась схема коллекторной термостабилизации, работа которой основана на действии ∥ООСН. В данном же каскаде ∥ООСН действует только на частотах сигнала, что отражено на рисунке 3.5б.

Воспользовавшись рекомендациями подраздела 2.3, получим выражения для основных параметров в области СЧ. Для коэффициента усиления по напряжению получим:

т.к. SRос>>1, Rэкв=RкRн. В большинстве случаев Rос>Rэкв, поэтому K меняется незначительно. Само же изменение K объясняется тем, что, в отличие от классической структуры УУ с ∥ООСН, в реальной схеме каскада нет столь четкого разделения цепи ОС и цепи прямого усиления.

Входное сопротивление каскада с ∥ООСН равно:

Выходное сопротивление каскада с ∥ООСН равно:

т.к. как правило S>>g и SRг>>1.

Для определения параметров каскада в области ВЧ следует воспользоваться соотношениями для каскада с ОЭ (см. подраздел 2.5), принимая во внимание, что при расчете постоянной времени каскада τв следует учитывать выходное сопротивление каскада с ∥ООСН, т.е. Rэкв=RвыхRн и влияние ∥ООСН на крутизну — SОС=S–1/Rос.

Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области ВЧ (МВ) путем включения последовательно с Rос корректирующей индуктивности Lос. Эффект коррекции объясняется уменьшением глубины ООС в области ВЧ (МВ). Расчет каскада с ОЭ и ∥ООСН в области НЧ ничем не отличается от расчета каскада без ОС (следует только учитывать изменение Rвх и Rвых при расчете постоянных времени разделительных цепей), исключение составляет расчет разделительной емкости Cрос из условия XCросRос/(10…20).

Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области НЧ (БВ) путем уменьшения емкости Cрос. Эффект коррекции объясняется уменьшением глубины ООС в области НЧ (БВ).

Механизм действия ∥ООСН в каскаде на ПТ с ОИ (схема не приводится ввиду совпадения ее топологии рисунку 3.5) во многом идентичен только что рассмотренному. Приведем расчетные соотношения для основных параметров каскада на ПТ с ∥ООСН:

,

Как правило, Rос>Rэкв и K>>1, тогда

Все вышесказанное о влиянии ∥ООСН на АЧХ (ПХ) каскада на БТ справедливо и для каскада на ПТ.

∥ООСН обычно применяют тогда, когда требуется понизить входное сопротивление каскада, что необходимо во входных каскадах УУ, работающих в низкоомном согласованном тракте передачи.

3.5. Параллельная ООС по току

На рисунке 3.6 приведена схема двухкаскадного усилителя, охваченного общей параллельной ООС по току (∥ООСТ), которая вводится в усилитель путем включения резистора Rос.

Рисунок 3.6. Усилитель с общей ∥ООСТ

Напряжение ОС снимается с резистора Rэ2, включенного последовательно с нагрузкой усилителя. Напряжение ОС, пропорциональное выходному току усилителя, образует ток Iос, протекающий через Rос. Во входной цепи УУ происходит алгебраическое сложение токов Iвх и Iос. Поскольку ∥ООСТ применяется в основном в усилителях тока, то логично оценить ее воздействие на коэффициент усиления по току:

где FI=1+βIKI — глубина ОС по току.

Если принять, что KI усилителя без ОС велик и источник сигнала имеет большое внутреннее сопротивление (т.е. представляет собой источник тока), то KI ОС≈(Rос+Rэ2)/Rэ2. Если Rос>>Rэ2, то KI ОСRос/Rэ2. Следовательно, ∥ООСТ стабилизирует коэффициент передачи по току УУ.

Входное сопротивление УУ с ОС определяется способом подачи сигнала ОС во входную цепь, поэтому:

Выходное сопротивление УУ с ОС определяется способом снятия сигнала ОС в выходной цепи, поэтому:

Описанный усилитель целесообразно выполнить в виде ИМС с внешней цепью ОС, что позволяет в широких пределах изменять его характеристики.

3.6. Дополнительные сведения по ОС

3.6.1. Комбинированная ООС

В УУ возможно применение различных видов ООС одновременно. Характерным примером в этом отношении является каскад с ОЭ и комбинированной ООС (рисунок 3.7) — ПООСТ за счет R1 и ∥ООСН за счет R2.

Применение подобной комбинированной ООС (КООС) целесообразно в случае выполнения усилителя в виде гибридно-пленочной ИМС, поскольку резисторы, выполненные по толсто- или тонкопленочной технологии имеют уход параметров в одну сторону (в плюс или минус). Влияние R1 и R2, например, на коэффициент усиления противоположны по знаку, поэтому одновременное их уменьшение или увеличение практически не скажется на результирующем коэффициенте усиления.

Рисунок 3.7. Усилительный каскад с комбинированной ООС

При приближенном анализе каскада с КООС следует учитывать, что коэффициент усиления будет в основном определяться ПООСТ, а Rвх и Rвых — ∥ООСН, поэтому:

Более подробно анализ каскадов с КООС представлен в [8].

3.6.2. Многокаскадные усилители с ООС

Для получения ООС в УУ необходимо, чтобы суммарный фазовый сдвиг φ, вносимый усилителем и цепью ОС, был равен 180° во всем диапазоне рабочих частот. В многокаскадном усилителе это требование обычно выполняется, строго говоря, только на одной частоте. На остальных частотах, особенно на границах и за пределами полосы рабочих частот АЧХ, j≠180°. Это происходит за счет дополнительных фазовых сдвигов, вносимых реактивными элементами схемы усилителя, причем эти сдвиги будут тем больше, чем большее число каскадов охвачено общей цепью ООС. При дополнительном фазовом сдвиге 180°, j=360° (баланс фаз), ООС превратится в ПОС, и, если βК>>1 (баланс амплитуд), усилитель превратится в генератор.

Теоретически одно- и двухкаскадный усилитель с частотно-независимой ООС устойчив при любой глубине ОС, трехкаскадный — при F≤9, однако практически, с учетом запаса по устойчивости и возможностью дополнительных фазовых сдвигов, рекомендуют брать F≤5 для однокаскадного, F≤4 для двух и F≤3 для трехкаскадного усилителя, охваченного общей ООС. Не рекомендуется охватывать общей ООС более трех каскадов, если же это необходимо, то возможно использование специальных корректирующих цепей, которые будут рассмотрены в подразделе 6.6.

3.6.3. Паразитные ОС в многокаскадных усилителях

Т.к. для различных каскадов многокаскадного усилителя обычно применяют один и тот же источник питания, то из-за наличия его внутреннего сопротивления ZП (рисунок 3.8) в усилителе возникают паразитные (нежелательные) ОС. Переменная составляющая тока каскадов (преимущественно оконечного) создает на ZП переменную составляющую UП, которая поступает в цепи питания предыдущих каскадов и тем самым замыкает сразу несколько петель паразитных ОС, что может привести к самовозбуждению.

Для недопущения самовозбуждения необходимо, чтобы петлевое усиление βК

Источник