Меню

Ограничение тока в импульсном стабилизаторе

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы позволяют теоретически достигнуть коэффициента полезного действия 100%. Это позволяет создавать достаточно мощные стабилизаторы с небольшими габаритами и очень малыми потерями. В реальных устройствах достигается кпд, равный . В этом смысле импульсные стабилизаторы работают как трансформаторы постоянного тока. Высокий кпд достигается за счет ключевого режима работы регулирующего элемента. В качестве основного недостатка импульсных стабилизаторов следует отметить высокий уровень помех, что делает их непригодными в ряде узлов радиоэлектронных устройств, таких как опорные генераторы, усилители радиочастоты приемников в радиостанциях и сотовых телефонах.

Импульсный стабилизатор осуществляет преобразование напряжения за счет явления самоиндукции в индуктивности накопительного дросселя L1. При этом в зависимости от схемы включения дросселя импульсные стабилизаторы могут понижать или повышать выходное напряжение. Более того! Импульсные стабилизаторы могут изменять полярность постоянного напряжения. В качестве примера на рисунке 1 приведена схема импульсного стабилизатора, понижающая выходное напряжение.

Схема понижающего импульсного стабилизатора
Рисунок 1. Схема понижающего импульсного стабилизатора напряжения

Рассмотрим принцип работы этой схемы. Когда ключ K1 замкнут, ток от источника первичного питания протекает через дроссель L1. При этом он накапливает энергию в магнитном поле. По мере насыщения магнитного потока дросселя, ток, протекающий через него, а значит и ток силового ключа K1 нарастает. Когда он размыкается, ток, протекающий через дроссель, не может мгновенно упасть до нуля за счет самоиндукции и продолжает протекать в нагрузку через открытый диод VD. Индуктивность дросселя должна быть больше критической, чтобы ток в нём не уменьшался до нуля. При этом условии напряжение на нагрузке также не будет иметь провалов и его среднее значение будет равно заданному значению.

Подобным образом работает и импульсный стабилизатор, повышающий входное напряжение. Его схема приведена на рисунке 2.

Схема импульсного стабилизатора, повышающего напряжение
Рисунок 2. Схема импульсного стабилизатора, повышающего напряжение

В этой схеме, как и в предыдущей схеме импульсного стабилизатора, накопление энергии происходит в дросселе L1. Отличие заключается в том, что в этот момент времени ток на выход устройства не поступает, и нагрузка питается от энергии, запасенной в конденсаторе С1. После размыкания ключа K1, источник питания и дроссель L1 оказываются включенными последовательно. Напряжение, формируемое ими суммируется и через открытый диод VD1 поступает на выход схемы. Таким образом, напряжение на выходе всегда будет больше входного.

При работе данной схемы следует учитывать тот факт, что ток, протекающий через ключ K1 может быть больше тока, протекающего через нагрузку. В результате напряжение, формирующееся на дросселе L1, будет больше напряжения питания. Иными словами, дроссель L1 в схеме, приведенной на рисунке 2, работает как трансформатор напряжения.

Теперь рассмотрим, как работает импульсный стабилизатор, изменяющий полярность входного напряжения. Его схема приведена на рисунке 3.

Схема импульсного стабилизатора, инвертирующего напряжение
Рисунок 3. Схема импульсного стабилизатора, инвертирующего напряжение

Метод формирования сигнала управления ключом поясняется эпюрами рис.4.21.

Рисунок 2. Формирование сигнала управления ключом

Если входное напряжение стабилизатора изменяется в пределах , то при ШИМ период остаётся постоянным, изменяется длительность импульса ( tИ ), следовательно, изменяется и коэффициент заполнения

Источник

Ограничение тока в импульсном стабилизаторе

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Мощный стабилизатор тока и напряжения на TL494

    Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат. Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

    В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант — это попытка создания простого и достаточно мощного стабилизатора.

    Импульсный стабилизатор тока и напряжения, принципиальная схема

    За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

    Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

    Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт. Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

    Устройство не боится коротких замыканий, просто сработает ограничение тока.

    Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

    Импульсный стабилизатор тока и напряжения, TL494

    Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

    Импульсный стабилизатор тока и напряжения, выходные конденсаторы

    Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

    Как это работает:

    ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

    Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное — микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

    Читайте также:  Если ползунок реостата переместить влево то сила тока в резисторе r1 уменьшится

    Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

    Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

    Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

    Импульсный стабилизатор тока и напряжения, токовый шунт

    Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

    Импульсный стабилизатор тока и напряжения, фильтр групповой стабилизации

    Импульсный стабилизатор тока и напряжения, кольца для дросселя Импульсный стабилизатор тока и напряжения, кольца для дросселя

    Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

    Импульсный стабилизатор тока и напряжения, дроссельИмпульсный стабилизатор тока и напряжения, измеряем индуктивность дросселя

    Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

    Импульсный стабилизатор тока и напряжения, MBR4060

    Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

    Импульсный стабилизатор тока и напряжения, вид собранной платыИмпульсный стабилизатор тока и напряжения, вид собранной платы

    Подробное описание и испытания блока можно посмотреть в видео

    Источник

    Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А)

    Регулируемый импульсный стабилизатор напряжения с ограничением по току, позволяет не только питать различную аппаратуру стабильным напряжением от 2 до 25 вольт, но и заряжать различные аккумуляторы стабильным током до 5А.

    Описываемый блок питания позволяет регулировать стабилизированное выходное напряжение и максимальный ток в нагрузке.

    Устройство работает в двух режимах: в случае питания аппаратуры — как стабилизатор напряжения с защитой от перегрузок, а при зарядке аккумуляторов — как стабилизатор тока с ограничением по напряжению.

    Источник питания прост в использовании, не боится перегрузок и замыкания выхода, имеет световую индикацию режима работы и высокий КПД.

    Основные технические характеристики:

    • Выходное напряжение, В 2 — 25;
    • Ток нагрузки, А 0-5.

    Такие параметры, как нестабильность, пульсации и КПД, во многом определяются режимом работы и поэтому не приведены.

    По желанию характеристики можно изменить без значительных изменений устройства. Например, если необходимо получить больший выходной ток, следует поставить датчик тока — резистор R14 большей мощности, а также увеличить сопротивление переменного резистора R4. Для уменьшения пульсаций целесообразно на выходе установить LC-фильтр, однако это приведет к снижению КПД.

    Принципиальная схема

    Блок питания содержит следующие узлы:

    • внутренний стабилизатор «отрицательного» напряжения VT1, VD1, R1 с фильтром С2;
    • внутренний стабилизатор «положительного» напряжения VT2, VD2, R2 с фильтром С3;
    • узел ограничения тока DA1.1, R3 4- R7, R12, R14;
    • узел ограничения напряжения DA1.2, VD3, R15 4- R18;
    • формирователь импульсов DD1.2, DD1.4;
    • индикаторы состояния DD1.1, HL2, R10 и DD1.3, HL1, R11;
    • коммутирующий транзистор VTЗ;
    • конденсаторы входного С1, промежуточного С4, С5 и выходного С6 фильтров.

    Работа устройства в режиме стабилизации напряжения. При включении на стабилитроне VD3 появляется напряжение, часть которого с движка переменного резистора R17 (которым регулируют выходное напряжение)поступает на инвертирующий вход DA1.2.

    Поскольку коммутирующий транзистор VT3 закрыт, конденсаторы С4 4- С6 разряжены и напряжение на неинвертирующем входе DA1.2, снимаемое с движка подстроенного резистора R18, близко к + Ubx. На выходе операционного усилителя появляется высокий уровень, что приводит к включению излучающего диода оптрона U1.3. В результате откроется фототранзистор оптрона U1.1 и на нижнем по схеме входе элемента DD1.2 появится высокий уровень. Следовательно, на выходе элемента DD1.4 — также высокий уровень, который откроет коммутирующий транзистор VT3.

    Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А), схема

    Рис. 1. Принципиальная схема регулируемого стабилизатора напряжения с ограничением по току.

    Через дроссель L1 начинает протекать ток нагрузки и зарядки конденсаторов С4 -С6. Напряжение на конденсаторах и на подстроечном резисторе R18 начинает увеличиваться. В какой-то момент напряжение на неинвертирующем входе DA1.2 станет меньше, чем на инвертирующем. На выходе операционного усилителя DA1.2 появится низкий уровень.

    Излучающий диод U1.4 и фототранзистор U1.1 оптрона закроются. На нижнем по схеме входе элемента DD1.2 и на входах элемента DD1.3 высокий уровень сменится низким. Коммутирующий транзистор закроется, а включившийся светодиод HL1 будет сигнализировать о том, что устройство работает в режиме стабилизации напряжения.

    По мере разрядки на нагрузку напряжение на конденсаторах С4 — С6 и, соответственно, на подстроечном резисторе R18 будет уменьшаться. И как только напряжение на неинвертирующем входе станет больше, чем на инвертирующем, процесс повторится.

    Напряжение с датчика тока — резистора R14 поступает на входы DA 1.1. Как только ток нагрузки превысит установленное значение, напряжение на неинвертирующем входе DA1.1 станет меньше, чем на инвертирующем. На его выходе появится низкий уровень, и включенный излучающий диод оптрона U 1.3 выключится.

    Фототранзистор оптрона U1.2 закроется. На верхнем по схеме входе элемента DD1.2 и на входах элемента DD1.1 высокий уровень сменится низким. В результате коммутирующий транзистор закроется, а включившийся светодиод HL2 просигнализирует о работе блока питания в режиме стабилизации тока.

    По мере разрядки конденсаторов С4, С5 ток через резистор R14 будет уменьшаться, что приведет к увеличению напряжения на неинвертирующем входе DA1.1 и затем к открыванию транзистора VT3. При повторном увеличении тока нагрузки процесс повторится. Ток стабилизации устанавливают переменным резистором R4.

    Наладка

    Налаживание блока питания начинают при отключенном транзисторе VT3. Сначала подают напряжение на вход и проверяют работу внутренних стабилизаторов. Напряжение на конденсаторе С2 должно быть в пределах 15 16 В, а на конденсаторе С3 — 8-9В. Незначительные отклонения не окажут заметного влияния на работу устройства.

    Транзисторы VT1 и VT2 при любом режиме не должны сильно нагреваться.

    После этого налаживают узел ограничения тока. Движок переменного резистора R4 устанавливают в левое по схеме положение, соответствующее минимальному току. Затем подстроенным резистором R6 выравнивают напряжения на входах DA1.1: следует найти такое положение, при котором с началом поворота движка резистора R4 светодиод HL2 выключался, а в крайнем левом по схеме положении включался. При такой настройке переменным резистором R4 можно изменять максимальный выходной ток от 0 до 5 А. Если все же получить максимальный ток 5 А не удастся, следует увеличить сопротивление резистора R4 и повторить налаживание.

    Читайте также:  Сварочные аппараты переменного тока cut

    После этого подключают коммутирующий транзистор VT3 и налаживают узел ограничения напряжения. Движок переменного резистора R4 устанавливают в положение, при котором светодиод HL2 выключен. Движок подстроенного резистора R18 устанавливают в верхнее, а движок переменного резистора R17 — в среднее по схеме положение, соответствующее половине максимального напряжения.

    Подстроечным резистором R18 устанавливают половину максимального выходного напряжения, которое должен обеспечивать блок питания. При этом к выходу необходимо подключить нагрузку, например, резистор сопротивлением 100 Ом и мощностью 2 Вт.

    Следует помнить, что максимальное выходное напряжение не должно сильно отличаться от действующего переменного напряжения на вторичной обмотке сетевого трансформатора.

    По окончании налаживания целесообразно провести калибровку резисторов R4 и R17. Для этого при выключенном блоке питания движок резистора R17 необходимо установить в среднее, движок резистора R4 — в крайнее левое положение, подключить к выходу амперметр и подать напряжение питания. Далее, перемещая движок резистора R4, увеличить ток в цепи до какого-либо значения, например 1 А, и установить соответствующую риску напротив стрелки ручки резистора и т. д. Затем, следует откалибровать резистор R17.

    При некоторых навыках, используя полученные шкалы и индикаторы HL1 и HL2, можно без измерительных приборов достаточно точно устанавливать напряжение и ток нагрузки, зарядный ток аккумуляторов и определять на них напряжение, устанавливать предельные режимы работы, ограничивая ток и напряжение в заданных интервалах.

    Детали

    Транзистор IRFZ44N допустимо заменить на IRF540N, хотя он требует более интенсивного охлаждения.

    Параметры полевого транзистора IRFZ44N (VT3):

    • максимальное напряжение сток-исток — 55 В;
    • максимальный ток стока — 49 А;
    • сопротивление открытого канала — 0,022 Ом.

    Из параметров транзистора видно, что у описанного блока питания имеются возможности для «разгона». Кроме того, если дополнить устройство RS-триггером, получится автомат, который отключится при возникновении перегрузки либо по достижении необходимого напряжения, когда блок используется как зарядное устройство.

    В качестве выпрямителя можно использованы диодные сборки КД227ГС.

    Коммутирующий транзистор VT3 и диод VD4 размещают на теплоотводе размерами 60x90x7 мм.

    Устройство можно питать от сетевого трансформатора с действующим напряжением на вторичной обмотке 20 — 25 В, который обеспечит необходимый ток нагрузки.

    Если напряжение питания устройства значительно отличается от указанного на схеме, следует учесть, что сопротивление резисторов R1 и R2 рассчитывают из условия обеспечения тока стабилитронов VD1 и VD2 в пределах 3-10 мА.

    При существенном увеличении питающего напряжения возможно значительное возрастание мощности, рассеиваемой на транзисторах VT1 и VT2 — их следует установить на теплоотводы.

    Дроссель L1 изготавливают на основе магнитопровода Б36. Обмотка содержит 20 витков провода ПЭВ 1,35. Готовую катушку заливают эпоксидной смолой.

    При сборке магнитопровода между чашками устанавливают немагнитную прокладку 0,3 -ь 0,5 мм.

    Конденсатор С4 — ниобиевый или танталовый (К52-9, К53-27) на номинальное напряжение не менее 32 В.

    Если конденсаторы фильтров не удастся расположить на плате (из-за больших габаритов), их целесообразно разместить отдельно, увеличив ёмкость конденсатора С1 до 15000 мкФ, а конденсатора С6 — до 4700 мкФ.

    Светодиоды HL1 и HL2 — КИПД66 Б — Л или любые другие, обеспечивающие необходимую индикацию. Желательно, чтобы они были разного цвета.

    Чертеж монтажной платы представлен в журнале «Радио» № 1 за 2004 год.

    Источник: Ходасевич А. Г, Ходасевич Т. И., Зарядные и пуско-зарядные устройства, Выпуск 2.

    Источник

    

    Импульсный стабилизатор напряжения

    Преобразование напряжения необходимо для того, чтобы реализовать возможность работы различных устройств от сети переменного тока. Кроме того, питание электронных схем разными величинами напряжения вынуждает выполнять не только превращение переменного электричества в постоянное, но и повышение или понижение разности потенциалов до нужных параметров.

    Импульсный преобразователь напряжения

    Основы импульсного преобразования

    Работа подобных устройств, их ещё называют импульсными стабилизаторами (ИС), основана на ключевой стабилизации. В схеме имеется элемент, который выполняет регулировку выходных параметров за счёт своего запирания-отпирания.

    В обычную трансформаторную схему входит трансформатор низкой частоты, имеющий первичную и вторичную обмотку. Импульсное преобразование тоже подразумевает наличие трансформатора, но уже высокочастотного.

    Внимание! Высокочастотные импульсные трансформаторы обладают меньшими габаритами, дешевле, но их мощность выше.

    Импульсные преобразователи напряжения (ИПН) допускают использование схем трёх типов:

    • повышающей;
    • понижающей;
    • инверторной.

    ИПН обладают высоким КПД и малыми габаритами. Они включают в свой состав следующие элементы:

    • блок питания (источник питания);
    • ключ – элемент коммутации;
    • накопитель энергии индуктивной природы – дроссель, катушка;
    • диод блокировки;
    • фильтр выходного напряжения – конденсатор большой емкости.

    Фильтр обычно включается параллельно нагрузке.

    Принцип работы

    Импульсный стабилизатор напряжения использует принцип сравнения опорного напряжения с напряжением на выходе. Схема позволяет регулировать длительность открытия ключа. Входное напряжение от источника питания (ИП) пропускается ключом по сигналу управления заданными частями (импульсами) с учётом того, что средний потенциал (пониженный или повышенный) был стабильным.

    Блок-схема ИС

    Сравнение с линейным стабилизатором

    Чтобы сравнить два принципа преобразования, нужно вспомнить, что линейные стабилизаторы (ЛС) – это обычно делитель напряжения. У него нестабильный потенциал подаётся на вход делителя, а стабильный – снимается со второго плеча (нижнего). Принцип стабилизации заключается в постоянном изменении сопротивления верхнего плеча схемы таким образом, чтобы на нижнем оно оставалось стабильным.

    К сведению. Когда отношение Uвх/Uвых велико, то КПД линейного стабилизатора очень низкий. Это связано с потерями энергии на регулирующем резисторе. Он греется, оттого часть мощности на входе теряется.

    У таких сборок есть свои плюсы, а именно: простота схемы, минимум элементов и неимение помех. По сравнению с линейными, импульсные стабилизаторы (ИС) сложнее, но работают стабильнее при правильно подобранной схеме.

    В ИС могут возникать автоколебания, которые приводят к частичной неработоспособности или полному выходу преобразователя из строя. Это происходит в случае, когда импеданс источника Uвх превысит значение импеданса ИС, тогда при снижении Uвх повышается ток на входе.

    Функциональные схемы по типу цепи управления

    По виду управляющей цепи можно выделить несколько рабочих схем, включающих в себя:

    • триггер Шмитта;
    • ШИМ – широтно-импульсную модуляцию;
    • ЧИМ – частотно-импульсную модуляцию.

    Важно! Импульсные стабилизаторы – это устройство с автоматическим регулированием, ориентирующееся на опорное напряжение, которое служит эталонным параметром для схемы регулирования.

    Блок-схемы ИПН с триггером Шмитта и ШИМ

    С триггером Шмитта

    При таком построении схемы стабилизации верхний и нижний пороги срабатывания триггера сравниваются с Uвх. Для этой цели используется компаратор – устройство сравнения. Ключ размыкается в момент, когда выходное напряжение сравняется с напряжением срабатывания триггера (Umax). Энергия, накопившаяся за это время, выдаётся на нагрузку, и Uвых после этого спадает. Как только её величина достигнет Umin (нижнего порога), триггер переключается, замыкая ключ.

    Читайте также:  Изобразить схему замещения цепи переменного тока

    Такой способ называется стабилизацией с двухпозиционной регулировкой или релейной. Схемы с триггером Шмитта имеют на выходе устройства напряжения с величиной пульсации, обусловленной разностью порогов срабатывания. Эту пульсацию практически устранить невозможно.

    В ИС с триггером Шмитта частотное преобразование зависит от Uвх и Iн (тока нагрузки) и является переменным.

    С широтно-импульсной модуляцией

    На выходе таких схем получают Uср (среднее), на которое влияют скважность импульсов и Uвх. Операционный усилитель (ОУ) представляет собой схему сравнения Uвых и Uоп (опорного) путём вычитания и последующего усиления. Результат поступает на модулятор, который подстраивает свои параметры в зависимости от этого результата.

    Модулятор изменяет (в сторону увеличения) отношение времени, при котором ключ открыт, к периоду тактового импульса генератора, если Uвых С частотно-импульсной модуляцией

    Подобные сборки отличаются тем, что скважность импульсов (частота) напрямую зависит от понижения Uвх или увеличения Iн. При этом длительность отпирающего ключ импульса неизменна. Частота подачи импульсов подчинена сигналу разности Uвых и Uоп. Моностабильный мультивибратор, имеющий управляемую запускающую частоту, может смело справиться с подачей команд на ключ.

    Моностабильный мультивибратор на транзисторах

    Основные схемы силовой части

    В зависимости от назначения ИС, можно выделить три базовых модели его построения:

    • понижающая;
    • повышающая;
    • инвертирующая.

    Независимо от конструктивного исполнения и назначения ИС, устройствами, использующимися в роли ключа, могут быть:

    • тиристор;
    • транзистор (биполярный или полевой).

    Основная задача подобного элемента – отрываться или закрываться по команде, поступающей на управляющий электрод.

    Преобразователь с понижением напряжения

    Обычно уменьшить величину напряжения необходимо чаще, потому такие ИС более востребованы.

    Простейшая схема понижающего ИС

    У понижающего стабилизатора напряжения, приведённого на схеме, ключ на полевом транзисторе VT1 откроется при подаче на него управляющего напряжения. Ток от плюсовой клеммы будет поступать на нагрузку через сглаживающий дроссель L1. Включенный параллельно в цепь диод VD1 в данный момент не пропускает ток. После размыкания ключа цепь тока следующая: дроссель L1 – нагрузка – общий провод – диод VD1 – дроссель L1. При этом ток, проходящий через дроссель, не прекратится мгновенно, а будет постепенно уменьшаться.

    Важно! У дросселей, имеющих большую индуктивность, он не становится равным нулю до начала следующего открытия ключа. Установка таких элементов нецелесообразна из-за увеличения габаритов и стоимости.

    Конденсатор C1 в это время будет разряжаться на нагрузку и поддерживать U вых. Емкость C вместе с индуктивностью L образует фильтр, снижающий размах пульсаций.

    Преобразователь с повышением напряжения

    В отличие от понижения Uвх, этот тип схем используют для питания цепей нагрузки, которым для работы необходимо напряжение выше, чем у источника.

    Повышающий ИС

    Компоненты схемы те же самые, но включены иначе. При открытом транзисторе диод закрыт, и на дросселе линейно нарастает ток. При запирании ключа ток начинает двигаться по цепи: плюсовая клемма – дроссель L1 – диод VD1 – нагрузка – минусовая клемма. Конденсатор C1 в это время будет заряжаться. Он будет поддерживать ток на нагрузке во время своего разряда на неё при следующем открытии ключа.

    Инвертирующий преобразователь

    Подобная сборка также не имеет гальванической развязки между входным и выходным каскадами. В ней совсем иное включение дросселя, конденсатора и нагрузки. Они расположены параллельно.

    Инвертирующий ИС

    При открытом ключе VT1 ток протекает по цепи: плюсовая клемма – транзистор – дроссель – минусовая клемма. Дроссель накапливает энергию при содействии магнитного поля. Когда транзистор закрывается, то цепь прохождения тока меняется: дроссель – конденсатор C1 – диод VD1 – дроссель. Энергия дросселя и энергия конденсатора будут полностью отдаваться нагрузке. Амплитуда пульсации целиком зависит от ёмкости C1. В этот момент напряжение на нагрузке не меняется, несмотря на то, что ток через С1 спадает почти до нуля.

    Кстати. Выходное напряжение у инвертирующих ИС может отличаться от напряжения источника питания, как в большую, так и в меньшую сторону.

    Влияние диода на КПД

    Включенный в электрическую цепь диод вызывает на себе падение напряжения от 0,4 до 0,7 В. При токе от нескольких ампер и низком Uвых на элементе происходит потеря мощности, что приводит к снижению КПД. Применяют альтернативный вариант – замену диода на полевой транзистор. Подбирают такой, чтобы в открытом состоянии падение напряжения на нём было минимальным.

    Внимание! Можно в схемах вместо диода поставить ещё один ключ, который будет работать в противофазе с основным.

    Гальваническая развязка

    Чтобы обезопасить человека при эксплуатации ИС, применяют гальваническую развязку. Для этого включают в схему разделительный трансформатор или дроссель с дополнительной обмоткой. На рабочих частотах 20 кГц – 1 МГц они не столь габаритны, как трансформаторы для частоты переменного тока 50 Гц. В управляющих цепях для развязки устанавливают оптроны (оптопары).

    Особенности использования

    Импульсные стабилизаторы могут использоваться как драйверы для светодиодов и led-ламп. Кроме того, их применяют в различных устройствах, таких как:

    • блоки питания ЖК телеприёмников;
    • оборудование навигации;
    • источники питания для компьютеров и устройств цифровых систем.

    Импульсные стабилизаторы используют для зарядных устройств и преобразования переменного тока в постоянное электричество.

    Фильтрация импульсных помех

    Сильные помехи, издаваемые импульсным стабилизатором напряжения (ИСН) в моменты коммутации ключа (броски тока и напряжения), необходимо подавлять. Для этого требуется применять фильтры и размещать их на входе и выходе.

    Входное сопротивление

    У ИСН, работающих под нагрузкой, при увеличении Uвх уменьшается ток на входе (Iвх). Это значит его входное сопротивление отрицательно дифференциальное. При подключении ИСН к источникам, у которых внутреннее сопротивление велико, возможна нестабильная работа.

    Использование в сетях переменного тока

    Для подключения к источнику переменного тока перед ИСН устанавливают выпрямитель и фильтр. Эта зона, где возникает опасность поражения человека током. Элементы, входящие в эту зону, должны быть закрыты от прикосновения или отмечены маркером (графическое и цветовое предупреждение).

    Преимущества и недостатки

    Все плюсы и минусы для импульсных стабилизаторов можно свести в одну таблицу.

    Достоинства и недостатки ИСН

    Преимущества ОС-регулирования

    Обратная связь при регулировании напряжения в ИС является важной опцией для импульсных стабилизаторов. Она позволяет поддерживать на выходе устройства напряжение стабильной величины, чутко следя за бросками напряжения и тока. В ИСН применяется широкополосная ОС (чем шире интервал частот, тем меньше уровень пульсации в результате).

    Доступность на рынке радиодеталей комплектующих для построения ИСН даёт возможность собрать своими руками любую из схем импульсных стабилизаторов. Использование в них готовых стабилизаторов на интегральных микросхемах (ИМС) и ключей на полевых транзисторах делает устройство максимально компактным.

    Видео

    Источник