Меню

Ограничение пускового тока конденсатором

Пусковой ток в DC/DC-преобразователях

Рис. 1. Пусковой ток в DC/DC-преобразователях

Вступление

Пусковой ток — это пиковый ток, возникающий в цепях источника питания при включении. На рисунке 1 показана стандартная система источника питания. Входной фильтр электромагнитных помех (EMI-фильтр) включает в себя конденсатор, который подключается к входной линии. DC/DC-преобразователь также имеет конденсаторы, которые подключаются на входе и выходе. Кроме того, к нагрузке может подключаться дополнительный конденсатор. Для каждого из этих конденсаторов требуется ток зарядки для обеспечения нужного уровня напряжения для устойчивого режима работы. Таким током является пусковой ток.

Высокий пусковой ток зависит от конкретно выбранных элементов схемы. Существует проблема, заключающаяся в том, что большие скачки тока могут создавать электромагнитные помехи в прилегающих схемах и приводить в действие (активизировать) элементы защиты цепей на входе, например предохранитель или полупроводниковую защиту от сверхтоков.

Кривая пускового тока

Типовая кривая пускового тока показана на рисунке 2. На ней видны два пиковых скачка тока. Первый скачок пускового тока отмечается при включении источника входного напряжения. Такой пиковый ток протекает через конденсаторы EMI-фильтра и входной конденсатор DC/DC-преобразователя, заряжая их до уровня, необходимого для устойчивого режима работы. Второй скачок тока наблюдается при включении DC/DC-преобразователя. Такой пиковый ток течет через силовой трансформатор DC/DC-преобразователя и выходной конденсатор и, в свою очередь, заряжает их до необходимого для устойчивого режима работы уровня.

Рис. 2. Пусковой ток в DC/DC-преобразователях

Пусковой ток

Первый пик тока часто называется пусковым пиком. Его пиковое значение и форма значительно зависят от характеристик источника входного питания, времени повышения напряжения и сопротивления источника питания. Резко поднимающееся вверх колебание входного напряжения, как в случае замыкания пускового переключателя, будет соответствовать высокой и узкой кривой пика. Более медленное и плавное нарастание входного напряжения, например на выходе любого входного электронного устройства или конденсаторной батареи, будет соответствовать более мягкому пику.

Пиковое значение пускового тока определяется уравнением i=Cхdv/dt, где С — емкостное сопротивление, общее сопротивление EMI-фильтра и входного сопротивления DC/DC-преобразователя, а dv/dt — это крутизна кривой напряжения. Пик тока фиксируется только один раз, если источник входного напряжения характеризуется очень быстрым временем восстановления напряжения. Для этого источник должен обладать достаточным запасом мощности. Как правило, резкое изменение напряжения бывает только в случаях механического переключения нагрузки или замыкания реле. Если источником питания является импульсный преобразователь, полупроводниковый регулятор мощности или конденсаторная батарея, то длительность импульса будет более продолжительной. Обычно длительность импульса выходного напряжения импульсных преобразователей составляет несколько миллисекунд, полупроводниковых регуляторов (SSPC) обычно 50 мкс–500 мкс, а больших конденсаторных батарей — обычно не менее нескольких миллисекунд. Такое длительное нарастание напряжения не приведет к образованию высоких пиков. Важно также определить не только пиковый ток, но и крутизну нарастания тока, чтобы установить, будут ли приведены в действие входной предохранитель, выключатель и SSPC под воздействием пускового тока.

Ток включения

Второй пик тока на рисунке 2 также является важной частью пускового тока. Этот скачок отмечается, когда DC/DC-преобразователь включается и направляет ток от входа для зарядки своего выходного конденсатора и конденсатора нагрузки. Стандартные кривые тока включения показаны на рисунке 3. Ток включения остается одинаковым, независимо от того, включается ли преобразователь под воздействием входного напряжения или управляющим сигналом.

Рис. 3. Пусковой ток в DC/DC-преобразователях

Для DC/DC-преобразователей компании VPT используется запатентованная схема обратной магнитной связи с жестким контролем внутреннего цикла запуска и четкой и плавной подачей выходного напряжения. Плавная подача напряжения обеспечивает контролируемое изменение на выходе и меньшую крутизну dv/dt. Благодаря мягкому пуску входной ток обычно не превышает значения входного тока устойчивого режима работы преобразователя во время пуска.

DC/DC-преобразователи компании VPT также характеризуются непрерывным постоянным предельным током на выходе. Они подают весь объем номинального тока на источник нагрузки, не дают сбоев и не отключаются, вызывая необходимость перезапуска. Это позволяет им запускать любой конденсатор источника нагрузки, независимо от емкости. В случае использования очень больших емкостных нагрузок DC/DC-преобразователь входит в режим ограничения тока. В данном случае входной ток не должен более чем в 1,5 раза превысить номинальный ток работы. Этого оказывается достаточно, чтобы не вызывать помехи и/или активировать защитные устройства на входе. Второй скачок пускового тока не оказывает негативного воздействия на DC/DC-преобразователи в рамках конструкции системы.

Ограничение активного скачка

В некоторых случаях требуется ограничить скачок тока, идущего на входные конденсаторы. Единственная возможность сделать это — включить в цепь последовательный элемент перед конденсаторами. На рисунке 4 показана базовая схема ограничения скачка тока. Последовательный резистор R1 ограничивает входной ток, пока будут достаточно заряжены конденсаторы. После зарядки входных конденсаторов реле S1 замыкается и полный объем тока подается на DC/DC-преобразователь.

Рис. 4. Пусковой ток в DC/DC-преобразователях

Для ограничения пускового тока может также использоваться дроссель. Для такого решения не требуется обходного контура, так как постоянный ток проходит через него с низкими потерями. Вместе с тем, как правило, требуется большой номинал индуктивности для эффективного ограничения пускового тока. Необходимо проявлять осторожность, так как дроссель может образовывать резонансный контур с входным фильтром или с внутренним контуром обратной связи DC/DC-преобразователя, вызывая нестабильность работы системы. Обычно требуется установка дополнительных компонентов для снижения возникшего резонанса.

Другая распространенная схема изображена на рисунке 5. В ней используется последовательный МОП-транзистор VT1. Транзистор VT1 обычно находится в выключенном состоянии, при этом через резистор R2 подается низкое напряжение на затвор. При подаче входного напряжения питание на затвор подается через R1. Время включения транзистора VT1 ограничивается временем зарядки конденсатора С1. Значения R1 и С1 подбираются такие, чтобы входные конденсаторы заряжались медленно, ограничивая при этом пусковой ток. После зарядки входных конденсаторов на затвор транзистора VT1 подается напряжение до такого значения, пока оно не будет ограничено стабилитроном. При этом транзистор VT1 остается полностью включенным.

Данная схема может быть изменена путем подключения транзистора VT1 к плюсу питающего провода. Питание может подаваться точно так же с помощью использования Р-канального МОП-транзистора. Возможно также использование N-канального МОП-транзистора, но с подачей питания на затвор через генератор или отдельный источник питания. Существует множество других схем ограничения пускового тока. Все они используют последовательное устройство в первичной цепи и работают приблизительно по одной и той же схеме. Важно, чтобы всегда при окончании зарядки конденсаторов последовательное устройство было шунтировано или полностью включено в целях снижения сопротивления и потери мощности. Также важно, чтобы контроль пускового тока не приводил к возникновению шума и помех во входной линии, так как он осуществляется до EMI-фильтра.

Читайте также:  Аппарат для измерения потребляемого тока

Входные модули с ограничением пускового тока

Во многих входных модулях компании VPT предусмотрена встроенная система ограничения пускового тока (таблица 1). В каждом модуле используется последовательный N-канальный МОП-транзистор, подключенный к плюсу питающего провода. N-канальный МОП-транзистор обеспечивает самое низкое сопротивление в открытом состоянии с целью минимальных потерь мощности. Благодаря подключению его к плюсу питающего источника обратная цепь остается замкнутой, что упрощает конструкцию системы. В таких моделях МОП-транзистор используется в двух целях. Он также обеспечивает защиту от входного напряжения во время переходного режима.

Таб. 1. Пусковой ток в DC/DC-преобразователях

Модели DV–704A и DVMN28 включают EMI-фильтр и ограничение пускового тока. Обе схемы оптимизированы для совместной работы. Цепь пускового тока ограничивает любой ток, поступающий в EMI-конденсаторы, но не вызывает никаких дополнительных электромагнитных помех во входных линиях, как это может происходить в случае дискретных контуров. Модель VPTPCM–12 содержит цепь контроля пускового тока, которая ограничивает пусковой ток на конденсаторах данной модели и на конденсаторах в нагрузке. Но в ней также имеются переключатели, вследствие чего могут потребоваться дополнительные EMI-фильтры на входе.

Заключение

Пусковой ток — это пиковый ток, возникающий при подаче или включении напряжения. В некоторых случаях может быть необходимо ограничение скачка тока во входных конденсаторах. Это требует построения дополнительной схемы. А с применением DC/DC-преобразователей компании VPT многие системы питания будут соответствовать необходимым требованиям без построения специального решения ограничения пускового тока, что позволит упростить схему, снизить количество элементов, размер и цену на компоненты, при этом увеличив надежность и эффективность устройства.

Источник

Использование термисторов для ограничения бросков тока в источниках питания

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Термистор
Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.

ТКС термистора
Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

Сопротивление при 25˚С

Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Читайте также:  В чем плюс трехфазного тока

Rном — номинальное сопротивление термистора при температуре 25°С

Iмакс — максимальный ток через термистор (максимальный установившийся ток)

Смакс — максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Источник

применение позисторов epcos для ограничения пускового тока

Авт, доктор Стефан Бенкхоф (Dr. Stefan Benkhof, менеджер-маркетолог EPCOS/TDK).

Перевод — Дмитрий Кузнецов, руководитель службы технической поддержки ООО «АЕДОН».

Высокие значения пусковых токов повсеместно можно встретить при работе такого оборудования, как системы привода, инверт е ры или в источник ах электропитания в момент включения. Поскольку в результате протекания большого тока выходу из строя подвержены, например, выпрямители преобразователей напряжения или предохранители, необходимо предпринять меры поуменьшению тока (рисунок 1) . Существует по крайней мере два метода ограничения пускового тока — пассивный и активный. В первом случае — это устройство защиты (ограничителя пускового тока — ОПТ ), устанавливаемое последовательно в цепь электропитания, во втором — использование схемы активного шунта, срабатывающей после того, как то к достигнет безопасного значения. Выбор метода ограничения сводится к конкретному применению и зависит от множества факторов: требуемой мощности, частотных характеристик броска тока, рабочей температуры окружающей среды и стоимости изделия.

Пассивный метод ограничения пускового тока.

Для преобразователей напряжения номинальной мощностью до нескольких Ватт наиболее приемлемым решением может служить включение малоомного резистора последовательно с нагрузкой.

NTC -термистор имеет высокое омическое сопротивления при низких температурах корпуса, что позволяет эффективно рассеивать пиковую составляющую пускового тока, и низкое сопротивление — при высоких температурах. В результате поглощения тока нагрузки и последующего саморазогрева в нормальных климатических условиях (при «комнатной» температуре окружающей среды) сопротивление термистора падает до нескольких процентов от номинального значения. Это свойство позволяет уменьшить выделяемую на термисторе мощность при дальнейшем постоянном токе нагрузки, когда конденсатор-накопитель полностью заряжен. В целом, NTC -термистор наиболее дешевый и простой по схемотехнической реализации вариант (рисунок 2).

При разработке источников питания все большее внимание уделяется уменьшению потерь мощности везде, где это возможно. В случае, когда номинальная мощность источника превышает 500Вт, эти недостатки становятся более очевидными. Если ОПТ включен на протяжении всего времени протекания тока, потери энергии становятся значительными. Увеличение номинальной мощности устройства и увеличение времени его запуска приводят к появлению нежелательных дополнительных энергетических потерь. Если предположить, что рассеиваемая мощность на NTC -термисторе составляет порядка 1% от общей мощности преобразователя, а КПД последнего равен 92%, то около 12,5% всех энергетических потерь придется на NTC -термистор.

Еще одним методом является применение активного ограничителя пускового тока (АОПТ) с использованием реле или симисторов. В зависимости от сферы применения схема активного ограничения пускового тока может содержать мощный резистор, NTC -термистор или позистор ( PTC -термистор с положительным температурным коэффициентом) в качестве компонента-ограничителя (рисунок 3). Позистор, например, используется в бортовых зарядных устройствах с подключаемыми гибридными или электрическими двигателями, когда требуется передать энергию мощностью в несколько киловатт. Преимущества АОПТ проявляются как на мощностях выше 500Вт, так и на меньших мощностях в различных сферах применения. Хотя стоимость АОПТ заметно выше, такой подход позволяет не только уменьшить потери энергии, но и применить менее мощные и, как следствие, более дешевые переключатели и полупроводники.

Для некоторых применений позистор демонстрирует самые лучшие характеристики в качестве ОПТ. Поскольку температура NTC -термистора зависит от температуры окружающей среды, при низких температурах его сопротивление выше, соответственно ток заряда накопителя ниже и время выхода на режим больше. С другой стороны, повышенная температура окружащей среды лишает NTC -термистор возможности ограничить пусковой ток вследствие его низкого сопротивления. Поэтому, такой подход не востребован для применений, где требуется широкий температурный диапазон. Для NTC -термисторов время остывания, после которого возможно произвести повторное включение с эффективным ограничением тока, варьируется от 30 до 120 с в зависимости от применения, типа крепления и температуры окружающей среды. Для некоторых применений не требуется продолжительного остывания, где происходит быстрый активный разряд конденсаторов в цепи постоянного тока, например, в инверторах для новых стиральных машин или сушилок. Однако, эффективное применение АОПТ в аппаратуре, где присутствуют короткие перерывы напряжения, может оказаться невозможным в связи с тем, что сопротивление термистора при каждом случае включения будет оставаться низким. В обоих случаях позисторы фирмы EPCOS будут являться эффективным средством ограничения пускового тока.

В НКУ позистор работает как омическое сопротивление номиналом от 20 до 500 Ом (в зависимости от типа). Этого сопротивления хватает для ограничения пускового тока. Как только накопитель полностью заряжен, позистор шунтируется короткозамкнутым реле.

В случае выхода из строя элементов цепи заряда конденсатора, позистор выполняет защитную функцию цепи нагрузки. При протекании тока через элемент, его сопротивление многократно возрастает, и, благодаря наличию таких защитных свойств, позистор может служить защитой от короткого замыкания конденсатора и в случае, если не сработал шунт после полного заряда накопительного конденсатора (отказ коммутирующего элемента).

Все эти явления отказов вызывают резкий скачок температуры ограничителя тока. Для полной уверенности, что эффекты КЗ и отказ реле не причинят вреда аппаратуре, следует устанавливать именно позистор или мощный резистор. Позисторы фирмы EPCOS не требуют предварительного ограничения тока, так как обладают защитными свойствами, и могут устанавливаться непосредственно в питающую сеть с соответсвующим номиналом пробивного напряжения. На рисунке 4 представлен процесс ограничения тока в результате короткого замыкания конденсатора.

Читайте также:  Дополнительный источник электрического тока

В результате позисторы фирмы EPCOS (рисунок 5), применяющиеся в составе АОПТ, обладают замечательными свойствами:

— хорошая устойчивость к повышенной температуре окружающей среды.

— эффективное ограничение тока сразу же после отключения нагрузки (отсутствует необходимость охлаждения перед повторным запуском как у NTC -термисторов).

— собственная защита от перегрузки по току, вызванной аварийными ситуациями.

В таблице 1 представлен номенклатурный ряд элементов, основные параметры и наличие в наборах с образцами.

Для всех моделей ОПТ диапазон температур составляет от -20…до +85 С при работе на максимальном пробивном напряжении

График изменения сопротивления приведен в data sheet на сайте EPCOS для температурного диапазона -40…+180 С.

Список используемой литературы:

3. Bodo’s Power System, February 2014, page 34

Источник



Простой и эффективный ограничитель пускового тока предотвращает появление помех

Активная схема и реле заменяют NTC термистор с высокими потерями.

Отключаемые блоки питания с нагрузкой от 200 Вт и более, требуют использования ограничителей пускового тока. Неограничиваемый пусковой ток может достигать величины до нескольких сот Ампер, способных повредить сетевой выпрямитель, сжечь предохранители и индуктивности входного фильтра и повредить PFC (схема коррекции реактивной мощности) фильтрующие конденсаторы.

Простым методом ограничения пускового тока является использование NTC (отрицательный температурный коэффициент) термисторов, включенных последовательно с линией питания. В холодном состоянии термистор имеет высокое сопротивление, которое значительно уменьшается при возрастании температуры, ограничивая пусковой ток за счет своей тепловой инерции и способности быстро уменьшать сопротивление. В то же время, NTC термистор имеет остаточное сопротивление при нормальном рабочем токе источника питания. Для сохранения низкого нормального сопротивления, термистор должен длительное время работать при высокой температуре, что может ухудшить температурный режим источника питания и повысить температуру в его корпусе, где рассеивание энергии и так составляет значительную величину.

Идея конструкции представляет альтернативную схему, которая эффективно ограничивает пусковой ток и не добавляет дополнительные источники тепла в корпус блока питания. Без внесения дополнительных потерь энергии во время нормальной работы, коммутируемый последовательный резистор эффективно ограничивает пусковой ток источника питания до тех пор, пока PFC электролитические конденсаторы не наберут полный заряд. После этого, электромеханическое или твердотельное реле с гальванической изоляцией закорачивает резистор.

В то же время, определение момента полного заряда PFC схемы представляет некоторую трудность. Конструкция универсальных блоков питания подразумевает работу в некотором диапазоне входного переменного напряжения и определение напряжения, означающего полный заряд, может быть ошибочным. Кроме того, ограничитель пускового тока должен задержать начало работы любых дополнительных источников питания и других потребителей энергии для обеспечения заряда PFC конденсаторов в полном объеме.

Простейшим методом решения этих проблем является использование схемы, которая измеряет собственно пусковой ток, а не напряжение на PFC конденсаторах. Она определяет окончание процесса пуска, отслеживая угасание амплитуды пускового тока. По достижению заданного уровня, схема дает команду на запуск вспомогательных источников питания и других потребителей энергии. Отслеживание пускового тока позволяет эффективно контролировать начало работы источника питания и делать порог включения независимым от напряжения сети питания.

На рис.1 показан реальный вариант схемы PFC, в которой используется ограничитель пускового тока с переключаемым резистором. Схема измерения пускового тока содержит проволочный резистор R1 и параллельный MOSFET транзистор в режиме обеднения Q1, который подключен к резистору R2, как источник тока, работающий на резисторы R3 и R4. В широком диапазоне падений напряжения на резисторе R1 от нескольких сотен до нескольких вольт, данная схема вырабатывает стабильный ток, который запрещает работу вспомогательных источников питания и предотвращает их влияние на процесс ограничения входного тока. Когда пусковой ток достаточно снизится, падение напряжения на резисторе R1 становится недостаточным для функционирования Q1 в режиме источника тока.

Ток, протекающий через Q1, снижается, разрешая работу вспомогательных источников питания и включение блока питания, активируя реле S1, чьи контакты закорачивают резистор R1. Номинал R2 определяет ток, необходимый для удержания вспомогательных источников питания в выключенном состоянии, что дает возможность PFC конденсатору C1 полностью зарядиться. 12 В электромеханическое реле, например, G2RL-1 компании Omron, имеет контакты с низким сопротивлением для шунтирования R1.

В качестве альтернативы, для замены S1, можно использовать оптически изолированное твердотельное реле, например, RP1A48D5 компании Carlo Gavazzi с MOSFET транзистором или SCR (управляемый выпрямитель) при условии, что падение напряжения на выходных контактах замены не вносит заметных потерь мощности.

Рис.2 иллюстрирует протекание процесса заряда по падению напряжения на резисторе R1. Экспоненциальная огибающая и ее заполнение характеризуют пусковой процесс; фильтр R3 и C2 отфильтровывает заполнение и формирует экспоненциально снижающееся напряжение на R4, которое удерживает Q2 включенным во время всего процесса пуска. Q2 предотвращает запуск вспомогательных источников питания, удерживая их входы разрешения работы в низком состоянии. При падении напряжения на R1 в несколько вольт, Q1 прекращает вырабатывать постоянное напряжение и закрывает Q2, разрешая работу вспомогательных источников питания. Таким образом, весь источник питания ожидает, когда пусковой ток достигнет безопасной величины, установленной резистором R2. Источник питания включается немедленно, как только реле S1 сработает и закоротит резистор R1. Остальные элементы на рис.1 относятся к стандартной схеме PFC, но могут также быть заменены на часть любой другой конфигурации источника питания.

Включение 2,4 кВт источника питания

Trace 1 на рис.3 иллюстрирует включение 2,4 кВт источника питания с ограничителем пускового тока и цепью задержки включения, которая разносит по времени процессы подключения к сети и включения блока питания. Величина пускового тока ограничена 5 А, что значительно меньше, чем уровень нагрузки 2,4 кВт. Trace 4 отражает входной ток, измеренный с помощью токового датчика. На рис.4 отражено сссс. Его пусковой ток специально ограничен на уровне 5 А, что значительно ниже рабочего тока, составляющего приблизительно 14 А.

Источник