Меню

Номинальное сопротивление нагрузки трансформатора тока

Выбор измерительных трансформаторов тока — основные характеристики

В статье описаны основные параметры трансформаторов тока.

Коэффициент трансформации

Расчетный коэффициент трансформации – это отношение первичного расчетного тока к вторичному расчетному току, он указан на табличке с паспортными данными в виде неправильной дроби.

Чаще всего используются измерительные трансформаторы x / 5 A, большинство измерительных приборов имеют при 5 A больший класс точности. По техническим и, прежде всего, по экономическим соображениям при большой длине измерительной линии рекомендуется использовать трансформаторы x / 1 A. Потери в линии в 1-A-трансформаторах составляют всего 4 % от потерь 5-A-трансформаторов. Но в этом случае измерительные приборы имеют обычно меньший класс точности.

Номинальный ток

Расчетный или номинальный ток (использовавшееся прежде название) – это указанное на табличке с паспортными данными значение первичного и вторичного тока (первичный расчетный ток, вторичный расчетный ток), на которое рассчитан трансформатор. Нормированные расчетные токи (кроме классов 0,2 S и 0,5 S) равны 10 – 12,5 – 15 – 20 – 25 – 30 – 40 – 50 – 60 – 75 A, а также числам, полученным из этих значений умножением на число, кратное десяти.

Нормированные вторичные токи равны 1 и 5 A, предпочтительно 5 A.

Нормированные расчетные токи для классов 0,2 S и 0,5 S равны 25 – 50 – 100 A, а также числам, полученным из этих значений умножением на число, кратное десяти, вторичный ток (только) 5 A.

Правильный выбор номинального тока первичной обмотки очень важен для точности измерения. Рекомендуется максимально близкое сверху к измеренному / определенному току (In) отношение.

Пример: In = 1 154 A; выбранное отношение = 1 250/5.

Номинальный ток можно определить на основании следующих предпосылок:

  • Номинальный ток измерительного трансформатора, умноженный на 1,1 (трансформатор с ближайшими характеристиками)
  • Предохранитель (номинальный ток предохранителя = номинальный ток трансформатора) измеряемой части установки (низковольтные главные распределительные щиты, распределительные шкафы)
  • Фактический номинальный ток, умноженный на 1,2 (этот метод нужно использовать, если фактический ток значительно ниже номинального тока трансформатора или предохранителя)

Нежелательно использовать трансформаторы с избыточными расчетными величинами,
т.к. в этом случае может сильно снизиться точность измерения при относительно низких токах
(относительно первичного расчетного тока).

Расчетная мощность трансформаторов тока

Расчетная мощность трансформатора тока – это результат нагрузки со стороны измерительного прибора и квадранта вторичного расчетного тока, она измеряется в ВA. Нормированные значения равны 2,5 – 5 – 10 – 15 – 30 ВА. Можно также выбирать значения, превышающие 30 ВА в соответствии со случаем применения. Расчетная мощность описывает способность трансформатора пропускать вторичный ток в пределах допускаемой погрешности через нагрузку.

При выборе подходящей мощности необходимо учесть следующие параметры: Потребление мощности измерительными приборами (при последовательном подключении . ), длина кабеля, поперечное сечение кабеля. Чем больше длина кабеля и меньше его поперечное сечение, тем больше потери в питающей линии, т.е. номинальная мощность трансформатора должна иметь соответствующую величину.

Мощность потребителей должна быть близка к расчетной мощности трансформатора. Очень низкая мощность потребителей (низкая нагрузка) повышает кратность тока нагрузки, поэтому измерительные приборы могут быть недостаточно защищены от короткого замыкания. Слишком большая мощность потребителей (высока нагрузка) отрицательно сказывается на точности.

Расчет трансформатора тока малой мощности

Часто в системе уже имеются трансформаторы тока, которые можно использовать при установке нового измерительного прибора. При этом нужно обратить внимание на номинальную мощность трансформатора: Достаточна ли она для дополнительных измерительных приборов?

Классы точности

В зависимости от точности трансформаторы тока делятся на классы. Стандартные классы точности: 0,1; 0,2; 0,5; 1; 3; 5; 0,1 S; 0,2 S; 0,5 S. Коду класса соответствует кривая погрешностей тока и угловая погрешность.

Классы точности трансформаторов тока зависят от значения измерения. Если трансформаторы тока работают с малым по отношению к номинальному току током, точность измерения существенно снижается. В приведенной ниже таблице указаны предельные значения погрешности с учетом значений номинального тока:

Класс точности трансформаторов тока

Для комбинированных измерительных устройств рекомендуется использовать трансформаторы тока того же класса точности. Трансформаторы тока с более низким классом точности приводят к снижению точности измерения всей системы – преобразователь тока + измерительное устройство, которая в этом случае определяется классом точности трансформатора тока. Тем не менее, использование трансформаторов тока с меньшей точностью измерения, чем в измерительном устройстве, возможно с технической точки зрения.

Кривая погрешностей трансформатора тока

Кривая погрешностей трансформаторов тока

Измерительные трансформаторы и защитные трансформаторы

В то время, как измерительные трансформаторы должны максимально быстро насыщаться после выхода за диапазон потребляемого тока (выражается кратностью тока нагрузки FS), чтобы предотвратить рост вторичного тока в случае сбоя (например, короткого замыкания) и защитить таким образом подключенные устройства, защитные трансформаторы должны максимально долго не насыщаться.

Защитные трансформаторы используются для защиты установки в сочетании с соответствующими коммутирующими устройствами. Стандартные классы точности для защитных трансформаторов – 5P и 10P. «P» означает «protection» – ″защита″. Номинальная кратность тока нагрузки указывается (в %) после обозначения класса защиты. Например, 10P5 означает, что при пятикратном номинальном токе негативное отклонение со стороны вторичного тока от значения, ожидаемого в соответствии с коэффициентом трансформации (линейно),
составляет не более 10 % от ожидаемого значения.

Для комбинированных измерительных приборов настоятельно рекомендуется использовать измерительные трансформаторы.

Стандартные размеры шин для трансформаторов

Стандартные размеры шин трансформаторов тока

Разъемные трансформаторы тока представлены в общем каталоге.

Источник

Расчетные сопротивления трансформаторов

Полное сопротивление двухобмоточных трансформаторов вычисляется по выражению:

где Uk – напряжение короткого замыкания, %; Uн – номинальное напряжение трансформатора, кВ; Sн – номинальная мощность, MВ·А.

Активное сопротивление определяется по потерям короткого замыкания в трансформаторе:

Rт = Pk·Uн 2 /Sн 2 , (26)

где Pk – потери короткого замыкания, Вт.

В выражениях (25) и (26) в качестве Uн можно подставить номинальное напряжение любой обмотки трансформатора. Сопротивление трансформатора будет приведено к тому напряжению, которое подставляется в выражения (25) или (26).

Индуктивное сопротивление трансформатора определяется по выражению:

Все необходимые данные указываются в каталогах и паспортах трансформаторов.

При расчетах необходимо иметь в виду, что все параметры трансформаторов имеют определенные разбросы. Например, действительная величина Uk трансформатора может отличаться от каталожной величины для этого трансформатора на ±10 %; действительные потери короткого замыкания могут отличаться на ±10 %.

Поэтому при расчетах токов КЗ следует пользоваться действительными данными, указанными в технической документации. Пользоваться каталожными данными можно только при проектировании, когда действительные данные неизвестны.

Схема замещения трехобмоточного трансформатора приведена на рис. 9. Для таких трансформаторов указывается три величины Uк для каждой пары обмоток: высшего-среднего (ВС), высшего-низшего (ВН) и среднего-низшего (СН).

Сопротивления лучей эквивалентной звезды сопротивлений трехобмоточного трансформатора определяются из системы уравнений:

Uкв = 0,5(Uкв-с + Uкв-н – Uкс-н);

Uкс = 0,5(Uкс-н + Uкв-с – Uкв-н); (27)

Uкн = 0,5(Uкв-н + Uкс-н – Uкв-с).

Определив Uкв, Uкс, Uкн по выражению (25), находят полные сопротивления лучей звезды в Омах.

Рис. 9. Исходная схема и схема замещения
трехобмоточного трансформатора

Активное сопротивление большинства современных трехобмоточных трансформаторов достаточно большой мощности настолько мало, что не учитывается, а полные сопротивления считаются чисто индуктивными. Если требуется определить активные сопротивления трехобмоточного трансформатора, то следует учитывать, что указываемые в каталогах значения потерь короткого замыкания относятся к наиболее тяжелому случаю: обмотка высшего напряжения и одна из обмоток среднего или низшего напряжения загружены полностью, вторая обмотка среднего или низшего напряжения находится без нагрузки.

Трехобмоточные трансформаторы выполняются с мощностями среднего или низшего напряжения обмоток, равными 100 %, или 67 % мощности первичной обмотки. Для трансформаторов с мощностью вторичной обмотки среднего или низшего напряжения, равной 100 % мощности обмотки высшего напряжения, активное сопротивление определяется по выражению:

Читайте также:  Бьет током от акустики

Сопротивление обмотки, мощность которой равна 67 % мощности обмотки высшего напряжения, определяется по величине R100:

Для питания крупных потребителей (сети крупных городов и промышленных предприятии) применяются трансформаторы с расщепленной обмоткой низшего напряжения. У таких трансформаторов имеются две одинаковые обмотки низшего напряжения с одинаковой схемой соединений и одинаковой мощностью каждой обмотки, равной 50 % мощности обмотки высшего напряжения. При расчете сопротивлений таких трансформаторов следует учитывать, что величина Uк для них указывается для мощности каждой обмотки низшего напряжения.

Практически все современные трансформаторы имеют ответвления от обмоток для регулирования напряжения. В большинстве случаев изменение сопротивления трансформатора при регулировании напряжения, а следовательно, и изменение тока КЗ из-за этого не учитывается. Но в ряде случаев эти изменения приходится учитывать и возникает вопрос о вычислении сопротивления трансформатора при изменении числа витков его обмоток. У большинства трансформаторов распределительной сети ответвления для регулирования напряжения выполняются на стороне обмотки высшего напряжения. В соответствии с [2] требуется, чтобы все трансформаторы допускали длительную работу при напряжении питания, превышающем номинальное напряжение данного ответвления не более чем на 5 % при номинальной нагрузке и 10 % кратковременно (до 6 часов в сутки) или длительно при нагрузке 25 % номинальной. Для трансформаторов распределительных сетей с регулированием типов ПБВ и РПН с достаточной для практики точностью сопротивление трансформаторов для любого положения переключателя ответвлений Zтр можно определить по формуле:

Zтр = Zтн (1 ± ∆N) 2 , (30)

где Zтн – сопротивление трансформатора, определенное по выражению (25) для номинального напряжения; N – количество ответвлений; ∆ – изменение напряжения при переводе переключателя в одно следующее положение, ОЕ.

Выражение (30) выводится из основной формулы (25), если принять, что величина Uк, выраженная в процентах номинального напряжения, сохраняется неизменной. Следует отметить, что величина Uк при изменении числа витков остается постоянной не для всех конструкций, поэтому для трансформаторов мощностью 10 МВ·А и более в паспорте указываются три величены Uк – для номинального напряжения и для двух крайних ответвлений.

В соответствии с [2] для трансформаторов распределительных сетей предусмариваются два основных предела регулирования: для регулирования типа ПБВ – обычно ±2х2,5 %; для регулирования типа РПН у трансформаторов 25…630 кВ·А, 6…35 кВ ±6х1,67 % = ±10 %. Для трансформаторов большой мощности и более высоких напряжений пределы регулирования доводят до ±16 %.

Большинство трансформаторов в распределительных сетях имеет пределы регулирования типа ПБВ ±2х2,5 %. Сопротивление таких трансформаторов, определенное по выражению (31), будет изменяться в пределах

Zтр = Zтн (1 ± 0,05) 2 = (1,1. 0,91) Zтн.

При неизменном напряжении питания, равном номинальному напряжению основного ответвления Uн и питания от системы бесконечной мощности, ток трехфазного КЗ на выводах низшего напряжения будет изменяться в следующих пределах:

= Uн/((1,1. 0,91) Zтн) = (0,91. 1,1) Uн/Zтн.

При регулировании типа РПН в пределах ±10 % сопротивление трансформатора будет изменяться в пределах:

Zтр = Zтн (1 ± 0,1) 2 = (1,21. 0,81) Zтн,

а ток – в пределах

= Uн/((1,21. 0,81)Zтн) = (0,825. 1,23)Uн/Zтн.

Допускается работа трансформаторов при напряжении на его вводах, на 10 % превышающем номинальное напряжение.

Значения токов КЗ (за единицу принят ток КЗ при номинальном напряжении Uн) при различных напряжениях питания Uр и различных положениях переключателя ответвлений следующие:

– положение переключателя -10 -5 + 5 + 10;
– напряжение питания Uр, ОЕ 1,0 1,05 1,1 1,15 1,20;
– сопротивление трансформатора Zтр, ОЕ 0,825 0,91 1,0 1,10 1,21;
– ток КЗ I (3) к,ОЕ 1,21 1,15 1,1 1,05 0,99.

За расчетное напряжение питания Uр принимается вторичное напряжение трансформаторов, питающих распределительную сеть. Для современных трансформаторов это – 38,5; 11 и 6,6 кВ, что составляет 1,1 номинального напряжения сетевых трансформаторов 35; 10 и 6 кВ. Следовательно, расчетные условия (расчетное напряжение, равное 1,1 номинального напряжения сетевых трансформаторов и номинальное сопротивление) соответствует среднему значению тока КЗ. При установке переключателей ответвления при регулировании ПБВ в положения ±5 % токи КЗ отличаются всего на 5 % от расчетного, что вполне допустимо.

При регулировании типа РПН в пределах ±10 % возможные отклонения действительного тока от расчетного больше. Но трансформаторы с РПН имеют автоматическое управление, и отклонение действительного напряжения питания Uр от номинального напряжения Uрн ответвления не превосходит одной ступени регулирования или 1,67 %. В этом случае при положении переключателя ответвлений (±10 %) ток будет равен:

= ((1 ± 0,0167) 0,9Uр)/(0,825 Zтн) = (1,1. 1,07)Uр/Zтн,

или (0,99…0,96) Uрн/Zтн.

Следовательно, принятые расчетные условия обеспечивают определение расчетного тока КЗ при любых положениях ответвлений и питании от ЭЭС бесконечной мощности с точностью ±(5-10) %, что вполне достаточно. Действительные значения отклонений будут еще меньше, так как последовательно с сопротивлением трансформатора будет включено сопротивление линии распределительной сети.

Для трансформаторов с регулированием РПН в пределах ±16 % применяется автоматическое регулирование напряжения. Вопрос об учете изменения сопротивления трансформаторов решается в зависимости от местных условий, в основном от пределов действительного колебания напряжения.

Во многих случаях при определении тока КЗ на выводах трансформатора можно пренебречь не только сопротивлением ЭЭС, но и сопротивлением питающей сети. В этом случае расчетное уравнение принимает вид:

где Iн – номинальный ток трансформатора, А.

Таким приближенным расчетом удобно пользоваться для расчета токов КЗ в сетях 0,4 кВ.

Пример 6. В конце линий для условий примера 3 включены два трансформатора: 10/0,4 кВ, 25 кВ·А и 400 кВ·А, Uк = 4,5 %, Рк = 600 и 5500 Вт, Y/Yo. Определить ток КЗ на выводах 0,4 кВ трансформаторов.

Решение

Активные сопротивления трансформаторов равны:

R25 = 600·10 2 /25 2 = 96 Ом; R400 = 5500·10 2 /400 2 = 3,44 Ом.

Z25 = 10·4,5 10 2 /25 = 180 Ом,

Z400 = 10·4,5·10 2 /400 = 11,25 Ом.

X25 = = 152,3 Ом; X400 = = 10,71 Ом.

Если пренебречь сопротивлением сети, то ток трехфазного КЗ на выводах 0,4 кВ:

= 11000/ ·180 = 35,32 А, = 11000/ ·11,25 = 565,2 А.

Если трансформаторы подключены к кабельной линии, то токи КЗ:

= 11000/ ·183,86 = 34,58 А,

= 11000/ ·14,8 = 429,6 А.

Если трансформаторы подключены к воздушной линии с алюминиевыми проводами, то токи КЗ:

= 11000/ ·185 = 34,37 А,

= 11000/ ·16,04 = 396,4 А.

Те же вычисления выполняются по уравнению (2) для кабельной линии:

Zрс = 3,132 Ом; = 11000/ ·(3,132 + 180) = 34,72 А,

= 11000/ ·(3,132 + 11,25) = 442,11А.

На основании результатов расчета примера 6 можно сделать следующие выводы:

а) для трансформаторов очень малой мощности расчеты всеми способами (с учетом Zрс, активных сопротивлений, по полному сопротивлению) дают практически одинаковые результаты;

б) для трансформаторов большой мощности расчет без учета Zрс, недопустим;

в) в общем случае, поскольку численные соотношения активных, индуктивных и полных сопротивлений трансформаторов и линий весьма различны для разных случаев, все расчеты следует выполнять по выражению (7).

Пример 7. Определить сопротивления трехобмоточного трансформатора мощ-ностью 16 МВ·А; 115/38,5/6,6; Uк: ВН-СН 10,5 %; ВН-НН 17 %; СН-НН 6 %.

Решение

Uкв = 0,5· (10,5 + 17 – 6) = 10,75 %,

Uкс = 0,5· (10,5 + 6 – 17) = –0,25 %,

Uкн = 0,5· (17 + 6 – 10,5) = 6,25 %.

По выражению (25)

Zв = 10·10,75·115 2 /16000 = 88,85 Ом,

Zс = 10· (–0,25) ·115 2 /16000 = –2,066 Ом,

Zн = 10·6,25·115 2 /16000 = 51,66Ом.

Важно обратить внимание на то, что одно из сопротивлений лучей эквивалентной звезды оказалось отрицательным, что вызвано принятыми в [2] численными значениями Uk между разными парами обмоток трансформатора.

Читайте также:  Водяной генератор электрического тока для дома

Сопротивление трансформатора между выводами ВН и СН равно 88,85 – 2,066 = 86,79 Ом; между выводами ВН и НН 88,85 + 51,66 = 140,51 Ом; между выводами СН и НН -2,066 + 51,66 = 49,594 Ом.

Все сопротивления отнесены к напряжению 115 кВ.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Читайте также:  Схема простого источника постоянного тока

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник



Расчёт и выбор измерительных ТТ

11. Расчёт и выбор измерительных ТТ

11.1 Выбор измерительных трансформаторов тока, сечения жил кабелей. 3

11.1.1 Измерительные трансформаторы тока. 3

11.1.2. Методика выбора трансформаторов тока. 3

11.1.3. Расчёт коэффициента трансформации ТТ. 3

11.1.4. Проверка выбора коэффициента трансформации ТТ.. 4

11.2. Расчёт вторичной нагрузки ТТ. 4

Приложение 11.1. 7

11.1 Выбор измерительных трансформаторов тока, сечения жил кабелей

11.1.1 Измерительные трансформаторы тока

В проекте описан общий принцип выбора трансформаторов тока (ТТ) , приведены методики и алгоритмы расчёта параметров ТТ.

Трансформаторы тока, используемые для коммерческого учёта электроэнергии, должны быть включены в государственный реестр средств измерений, иметь действующее свидетельство (отметку в паспорте) о поверке СИ.

Трансформаторы тока выбирают по номинальному напряжению, первичному и вторичному токам, по типу установки, конструкции, классу точности.

Для присоединения расчётных счётчиков электроэнергии используются трансформаторы тока с классом точности не более 0,5S.

Установка ТТ осуществляется на присоединениях напряжением класса 0,4 кВ.

В качестве основных нормативных документов регламентирующих требования по размещению ТТ и их параметрам используется ПУЭ (Глава 1.5 «Учет электроэнергии»),

11.1.2. Методика выбора трансформаторов тока.

Выбор конструкции ТТ.

Учитывая конструктивные особенности сборок низкого напряжения, расположение токоведущих шин, необходимо использовать шинные трансформаторы тока типа ТШП-0,66, ТШ-0,66, и трансформаторы тока опорного типа ТОП-0,66, Т-0,66.

11.1.3. Расчёт коэффициента трансформации ТТ.

Коэффициент трансформации по каждой точке необходимо выбирать с учётом минимальных и максимальных первичных токов в режимные дни (летний минимум и зимний максимум) или данных о присоединённой мощности абонента, или уставок предохранителей или установленной мощности силового трансформатора (для организации технического учёта на лучах ТП). Максимальный первичный ток ТТ рассчитывается по формуле:

Минимальный ток принимается равным 15% от максимального:

Согласно ПУЭ (п. 1.5.17) допускается применение трансформаторов тока с завышенным коэффициентом трансформации, если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40% номинального тока счётчика, а при минимальной рабочей нагрузке — не менее 5%. Выбор ТТ заключается в подборе ТТ с номинальным первичным током, удовлетворяющем условию:

11.1.4. Проверка выбора коэффициента трансформации ТТ

Выбранные коэффициенты ТТ проверяются на соответствие п. 1.5.17 ПУЭ. при применении электросчётчиков типа с Iном сч.=5 А, должны выполняться неравенства:

Трансформаторы тока необходимо установить типа ТШП-0,66, или ТШ-0,66, с классом точности 0,5S, с номинальной вторичной нагрузкой 5 ВА.

Расчётные токи присоединений и выбранные коэффициенты трансформации приведены в Приложении 11.1. таблица 11.1.

11.2. Расчёт вторичной нагрузки ТТ.

Чтобы погрешность ТТ не превысила допустимую для данного класса точности, нагрузка вторичных обмоток измерительных трансформаторов в соответствии с ГОСТ 7746 должна удовлетворять следующим требованиям: «для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 ВА нижний предел вторичных нагрузок — 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 ВА соответственно». Для ТТ с номинальными вторичными нагрузками выше 10 Вт вторичная нагрузка должна быть не менее 25 % от номинальной и не должна превышать номинальную, задаваемую в каталогах.

В проекте предусмотрено использование трансформаторов тока типа ТШП -0,66 и Т-0,66. Класса точности ТТ — 0,5S, номинальная вторичная нагрузка — 5 ВА и номинальный вторичный ток 5 А. В соответствии с требованиями ГОСТ 7746 расчётное значение вторичной нагрузки ТТ должно находится в пределах: 3,75 ВА … 5 ВА (0,15 Ом…0,2 Ом).

Согласно ГОСТ 7746 номинальная вторичная нагрузка — полное сопротивление внешней вторичной цепи трансформатора тока, имеющей коэффициент мощности cos φ = 0,8, при котором гарантируются класс точности трансформатора тока.

Нагрузка трансформатора тока складывается из следующих элементов: сопротивления проводов, связывающих счётчик электрической энергии с трансформаторами тока; сопротивления приборов, включённых в цепь трансформатора тока; переходного сопротивления в контактных соединениях.

Внешняя нагрузка на трансформатор тока определяется с учетом схемы соединения трансформаторов тока, данных каталогов на счетчики и расчётных данных длины вторичных цепей ТТ приведённых в кабельном журнале.

При расчёте внешней нагрузки трансформатора тока для упрощения принимается, что все полные сопротивления имеют одинаковые углы, т. е. могут складываться арифметически. Указанное допущение приемлемо, поскольку вносимая этим ошибка обычно невелика и идет в сторону дополнительного запаса.

Вторичная нагрузка трансформаторов тока определяется по формуле,

— переходное сопротивление в контактах принимается равным — 0,05 Ом;

— сопротивление проводов, Ом (в случае соединения трансформаторов тока звездой в испытательной клеммной коробке, сопротивление увеличить в 2- раза);

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

— сопротивление приборов, Ом

При выборе трансформаторов тока должно выполняться условие

где — номинальная допустимая нагрузка трансформатора тока в выбранном классе точности.

Сопротивление проводов для схемы включения счётчика и ТТ по схеме «звезды», определяют по формуле:

где — длина провода, м ;

— удельная проводимость, Ом/м;

— сечение провода или жилы кабеля;

Сопротивление счетчика, определяется из каталога на соответствующую аппаратуру непосредственно или пересчетом по имеющимся в каталоге данным о потребляемой мощности и токе по формуле,

где — мощность, ВА, потребляемая прибором при токе I, А.

Для рассматриваемых в проекте типов счетчиков мощность, потребляемая каждой токовой цепью, не превышает 0,1 ВА, следовательно, = 0,004 Ом.

Расчёты нагрузки вторичных измерительных цепей трансформаторов тока приведены в Приложении 11.1., Таблица 11.2.

Приложение 11.1

Выбор коэффициента трансформации и проверка выбранного коэффициента трансформации ТТ на присоединениях в соответствии п. 1.5.17 ПУЭ. Данные по присоединённой мощности, разрешённой единовременной мощности, рабочих токах взяты на основании материалов предпроектного обследования объекта.

Источник