Магнитное поле прямолинейного проводника с током
Дата публикации: 09 августа 2013 .
Категория: Статьи.
Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).
Магнитное поле
В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.
Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.
Рисунок 1. Магнитное поле вокруг проводника с током |
Рисунок 2. Направление магнитных индукционных линий |
Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.
Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.
Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.
Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).
Рисунок 3. Условное обозначение направления тока в проводниках
Правило буравчика
Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).
Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.
Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по «правилу буравчика» | Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по «правилу буравчика» |
Магнитная индукция
Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.
Рисунок 6. К закону Био и Савара |
Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:
где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.
В абсолютной практической рационализованной системе единиц МКСА
где µ0 – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:
µ0 = 4 × π × 10 -7 (генри/метр);
генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.
µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.
Размерность магнитной индукции можно найти по формуле
Вольт-секунда иначе называется вебером (вб):
На практике встречается более мелкая единица магнитной индукции – гаусс (гс):
Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:
где а – расстояние от проводника до точки, где определяется магнитная индукция.
Напряженность магнитного поля
Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ0 называется напряженностью магнитного поля и обозначается буквой H:
Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.
Найдем размерность H:
Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):
Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.
Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.
Магнитный поток
Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:
Размерность магнитного потока:
то есть магнитный поток измеряется в вольт-секундах или веберах.
Более мелкой единицей магнитного потока является максвелл (мкс):
Видео 1. Гипотеза Ампера
Видео 2. Магнетизм и электромагнетизм
Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
Источник
Магнитное поле проводника с током
Если магнитное поле симметрично, то вычисление напряженности поля, а значит, и индукции не представляет большого труда. Например, напряженность поля в точке а на расстоянии r от оси прямолинейного проводника с током
(рис. 1) в соответствии с законом полного тока в простейшей форме (1) выражается, как
Рис. 1 Напряженность магнитного поля проводника с током.
Формула (2)
так как полный ток равен току в проводе I , а контур совпадает с магнитной линией, которая проходит через точку
а (рис. 1 ), и .
Магнитная индукция
где B — магнитная индукция, Тл; I — ток, А; r — расстояние, м.
Если проводник находится в неферромагнитной среде, то, полагая μ=1 , получаем
Приведенная формула правильна при любом значении r, большем радиуса проводника и бесконечно большой длине проводника; однако она применима и при конечной длине проводника, если расстояние r значительно меньше длины проводника и точка, в которой определяется индукция, не находится вблизи конца проводника.
По закону полного тока нетрудно найти напряженность поля и внутри длинного цилиндрического провода радиуса a (рис. 2, а). Во всех точках поперечного сечения провода плотность тока
Из условий симметрии следует, что внутри провода, как и вне провода, все магнитные линии — это концентрические окружности с центром на оси провода.
Рис.2 Напряженность поля внутри провода с током (а) и распределение напряженности поля (б)
Окружность радиуса r совпадающий с магнитной линией. Обозначив площадь сечения, ограниченного замкнутым контуром, , а ток, пронизывающий это сечение,
по закону полного тока (1) можем написать выражение напряженности магнитного поля
которая одинакова во всех точках контура и направлена по касательной к окружности (рис. 2,а), т. е. H=HL.
Подставив в последнюю формулу выражения плотности тока и площади замкнутого контура, получим
Таким образом, напряженность поля в произвольной точке внутри провода пропорциональна расстоянию r этой точки от оси провода. На оси провода H=0, так как r=0. На поверхности провода (r=а) напряженность поля имеет наибольшее значение:
и далее при r>а уменьшается согласно (2).
График распределения напряженности магнитного поля внутри и вне проводника дан на рис. 2, б.
Магнитная индукция внутри проводника равна произведению напряженности магнитного поля и абсолютной магнитной проницаемости материала провода, т. е.
где В — магнитная индукция, Тл; I — ток, А; расстояние r и а — м.
Пример
Найти распределение напряженности поля трубчатого провода (рис 6.19) с внутренним радиусом г2 и внешним r3, если по проводу проходит ток I.
Рис. 5.1 Трубчатый провод
Решение. Площадь поперечного сечения трубчатого провода
и плотность тока в проводе
Проведем окружность радиусом г r3. т. е. за пределами провода,
нейдем, что
Источник
Магнитное поле. Индукция и напряженность магнитного поля. Закон Ампера.
Проводники с током в магнитном поле. Взаимодействие параллельных токов.
Если в поле (или электромагнита) поместить проводник с током, который создает свое собственное магнитное поле, то оба магнитных поля, взаимодействуя между собой, создадут силу, которая стремиться вытолкнуть проводник из поля. Как видно на рисунке №1 А, магнитные силовые линии поля и проводника слева от него совпадают по направлению и их полностью здесь больше, чем справа от проводника где магнитные силовые линии проводника идут навстречу линиям поля и ослабляют одна другую. Проводник выталкивается из магнитного поля вправо. Если изменить направление тока в проводнике (рисунок №1 Б), то направление силы также изменится. Сила с которой поле действует на проводник,
Для определения направления силы, действующей в магнитном поле, применяют правило левой руки: если расположить левую руку так, чтобы магнитные линии входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока проводнике, то большой палец укажет направление действия силы, приложенной к проводнику.
Два параллельных тока одинакового направления притягиваются друг к другу с силой, равной
Если токи имеют противоположные направления, то, используя правило левой руки, определим, что между ними действует сила отталкивания, определяемая выражением.
Движение заряженной частицы в магнитном поле. Сила Лоренца.
Формула силы Лоренца дает возможность найти ряд закономерностей движения заряженных частиц в магнитном поле. Зная направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле можно найти знак заряда частиц, которые движутся в магнитных полях.
Для вывода общих закономерностей будем полагать, что магнитное поле однородно и на частицы не действуют электрические поля. Если заряженная частица в магнитном поле движется со скоростью v вдоль линий магнитной индукции, то угол α между векторами v и Вравен 0 или π. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.
В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила ЛоренцаF=Q[vB] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv 2 /r , следовательно
(1)
Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,
Подствавив(1),получим (2)
т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v
Более конкретно, — это такой вектор, что сила Лоренца
, действующая со стороны магнитного поля на заряд
, движущийся со скоростью
, равна
Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В СИ: где
— магнитная постоянная. ( 4П*10^-7 Гн/м)
Зако́н Ампе́ра — закон взаимодействия электрических токов. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. dF=I
2) Закон Био—Савара-Лапласа и следствия из него: после прямого тока и в центре кругового тока.
Это физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.
где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r—радиус-вектор, проведанный из элемента dlпроводника в точку А поля, r — модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.
Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины.
Магнитное поле в центре кругового проводника с током — все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sina =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R.
3) Циркуляция вектора напряженности магнитного поля. Поле соленоида и тороида.
Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.
В математической формулировке для магнитостатики теорема имеет [2] следующий вид [1] [3] :
Здесь — вектор магнитной индукции,
— плотность тока; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование. Теорема может быть также представлена в дифференциальной форме:
Экспериментальное изучение магнитного поля соленоида показывает, что внутри соленоида поле однородно, вне соленоида — неоднородно и практически отсутствует.
Поле внутри соленоида однородно (при расчетах пренебрегают краевыми эффектами в областях, прилегающих к торцам соленоида).
Важное практическое значение имеет также магнитное поле тороида — кольцевой катушки, у которой витки намотаны на сердечник, который имеет форму тора. Магнитное поле сосредоточено внутри тороида, а вне его поле равно нулю.
Источник
§17. Магнитное поле проводника с током и способы его усиления
Магнитное поле проводника с током.
При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 38). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Рис. 38. Магнитное поле вокруг прямолинейного проводника с током
Направление магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику. Направление магнитных силовых линий можно определить по правилу буравчика. Его формулируют следующим образом.
Если поступательное движение буравчика 1 (рис. 39, а) совместить с направлением тока 2 в проводнике 3, то вращение его рукоятки укажет направление силовых линий 4 магнитного поля вокруг проводника. Например, если ток проходит по проводнику в направлении от нас за плоскость листа книги (рис. 39, б), то магнитное поле, возникающее вокруг этого проводника, направлено по часовой стрелке. Если ток по проводнику проходит по направлению от плоскости листа книги к нам, то магнитное поле вокруг проводника направлено против часовой стрелки.
Рис. 39. Определение направления магнитного поля по правилу буравчика.
Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля и его напряженность уменьшаются.
Напряженность магнитного поля в пространстве, окружающем проводник,
H = I/(2πr) (44)
Максимальная напряженность Нmax имеет место на внешней поверхности проводника 1 (рис. 40). Внутри проводника также
Рис. 40. Кривая распределения напряженности магнитного поля Н вокруг и внутри проводника с током.
возникает магнитное поле, но напряженность его линейно уменьшается по направлению от внешней поверхности к оси (кривая 2). Магнитная индукция поля вокруг и внутри проводника изменяется таким же образом, как и напряженность.
Способы усиления магнитных полей.
Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют обмоткой, или катушкой.
При проводнике, согнутом в виде витка (рис. 41, а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 41, б) и их силовые линии соединяются в общий магнитный поток.
Рис. 41. Магнитные поля, созданные витком с током (а) и катушкой (б)
При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле.
Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки. Магнитное поле катушки, обтекаемой током, имеет такую же форму, как и поле прямолинейного постоянного магнита (см. рис. 35, а): силовые магнитные линии выходят из одного конца катушки и входят В другой ее конец.
Поэтому катушка, обтекаемая током, представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.
Электромагниты нашли чрезвычайно широкое применение в технике. Они создают магнитное поле, необходимое для работы электрических машин, а также электродинамические усилия, требуемые. Для работы различных электроизмерительных приборов и электрических аппаратов.
Электромагниты могут иметь разомкнутый или замкнутый магнитопровод (рис. 42). Полярность конца катушки электромагнита можно определить, как и полярность постоянного магнита, при помощи магнитной стрелки. К северному полюсу она поворачивается южным концом.
Рис. 42. Электромагниты с разомкнутым (а) и замкнутым (б) магнитопроводом
Для определения направления магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика. Если совместить направление вращения рукоятки с направлением тока в витке или катушке, то поступательное движение буравчика укажет направление магнитного поля.
Полярность электромагнита можно определить и с помощью правой руки. Для этого руку надо положить ладонью на катушку (рис. 43) и совместить четыре пальца с направлением в ней тока, при этом отогнутый большой палец покажет направление магнитного поля.
Рис. 43. Определение полярности электромагнита с помощью правой руки
Источник