Меню

Находим токи трехфазной цепи

Пример расчёта трёхфазной цепи

ЧАСТЬ 3. Цепи трёхфазного тока

3.1. В результате изучения данного раздела студенты должны:

а. уяснить вопрос о получении трехфазной системы э. д. с;

б. познакомиться с двумя типами соединения в цепях трехфазного тока (звезда и треугольник);

в. знать соотношения между линейными и фазными параметрами (токами и напряжениями) как в случае симметричной, так и нессиметричной нагрузок для обоих типов соединения ;

г. ясно представлять назначение нейтрального провода в четырёхпроводной трёхфазной цепи;

д. уметь рассчитать трёхфазную цепь в симметричном и несимметричном режимах для обоих типов соединения либо графо-аналитическим методом с помощью векторных диаграмм, либо методом комплексных амплитуд;

е. усвоить понятия и способы определения фазных мощностей и мощностей всей трёхфазной нагрузки;

ж. уяснить преимущества трехфазной системы тока по сравнению с однофазной.

3.2.1.Нагрузка симметричная

Задача 3.В трёхфазную трёхпроводную цепь с симметричным линейным напряжением включён трёхфазный электроприёмник, собранный по схеме треугольник (рис.10)

Определить фазные и линейные токи, активную мощность каждой фазы и всей трёхфазной нагрузки. Построить векторную диаграмму напряжений.

  1. При соединении “треугольник” фазное напряжение равно линейному напряжению .

Учитывая, что нагрузка симметричная, находим фазные токи:

  1. Определяем линейные токи:
  1. Активная мощность одной фазы
  1. Активная мощность всей трёхфазной нагрузки:
  1. Строим векторную диаграмму:

а) строим базис – тройку симметричных векторов фазных (они же линейные) напряжений , , . (См рис.11);

б) строим вектора фазных токов и под углом сдвига фаз к соответствующим векторам фазных напряжений в сторону отставания ;

в) на основании уравнений состояния в соответствии с первым

законом Кирхгофа строим вектора линейных токов

Задача 4.Данные и требования такие же, как и в задаче 3. Отличие в типе соединения: вместо треугольника соединение звезда. (рис.12 )

1. При соединении “звезда”

2. Фазные (они же линейные) токи определим на основании закона Ома

3. Фазная активная мощность

4. Активная мощность всей трёхфазной нагрузки

5. Векторная диаграмма

а) строим базисную тройку векторов фазных напряжений ;

б) в сторону опережения по фазе ( нагрузка активно-ёмкостная ) под углом относительно соответствующих фазных напряжений строим вектора фазных (они же линейные) токов

в) на основании второго закона Кирхгофа вектора линейных напряжений найдем исходя из следующих уравнений:

Задача 5.В трехфазную четырехпроводную линию с симметричным линейным напряжением U включен электроприемник, собранный по схеме «звезда» (см. рис. 14). Даны сопротивления фаз

Определить фазные и линейные токи, ток в нейтральном проводе, активную мощность всей цепи и каждой фазы в отдельности.

  1. Благодаря наличию нейтрального провода напряжение на всех фазах симметризовано. Поэтому
  1. Фазные токи (они же линейные)
  1. Фазные активные мощности
  1. Активная мощность всей трехфазной нагрузки
  1. Ток в нейтральном проводе найдем графическим методом с помощью векторной диаграммы (Рис.15.):

a) строим базисную тройку симметричных векторов фазных напряжений ,

под соответствующими углами сдвигов фаз строим вектора фазных (они же линейные)

токов, задавшись при этом определенным масштабом.

— вектор тока совпадает по фазе с вектором т.к. сопротивление фазы А чисто активное. Длина вектора определяется выбранным масштабом.

— вектор отстает по фазе от вектора на угол т.к. фаза В имеет активно-индуктивный характер сопротивления. Длина вектора определяется в соответствии с масштабом и отмеряется линейкой. Угол откладывается по транспортиру.

— вектор опережает на угол

б) строим вектор тока нейтрального провода , для этого складываем (с помощью

(на основании первого закона Кирхгофа)

Замеряем линейкой длину вектора , умножаем её на масштаб и т.о. узнаем величину

Длину вектора (т.е. величину тока в нейтральном проводе) можно вычислить аналитически, используя законы геометрии. В этом случае диаграмма строится качественно (не в масштабе), а длина вектора вычисляется либо по проекциям, либо по теореме косинусов.

ЧАСТЬ 4. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА.

4.1. Изучение электрических машин постоянного тока надо начи­нать с их устройства. Разобраться с понятием: «Электрические машины», обратить внимание на то, что «Двигатель постоянного тока» и «Генератор пос­тоянного тока»,— это соответственно двигательный и генераторный режимы работы одной и той же электрической машины (свойство обратимости).

После изучения данного раздела студент должен:

1) знать основные конструктивные элементы машин постоянного тока, понимать их назначение;

2) знать классифика­цию машин постоянного тока по способу возбуждения магнитного поля;

3) понимать принцип действия генератора и двигателя постоянного тока;

4) иметь представление о том, как можно регулировать скорость и реверсировать двигатель постоянного тока; ориентироваться в пас­портных данных машины и определять по ним основные параметры и характеристики;

5) знать уравнение электрического состояния генератора и двигателя постоянного тока, знать от чего зависят э.д.с. якоря (Е) и электромагнитный момент (М)

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Расчет мощности трехфазной сети

Количество потребленной энергии в сети однофазного тока определяется простейшими расчетами, это не вызывает затруднений. Расчет мощности трехфазной сети сопряжен с некоторыми трудностями:

  • Наличие трех фаз вместо одной;
  • Различные схемы соединения потребителей – «звезда» или «треугольник»;
  • Симметрия или ее отсутствие при распределении нагрузки по фазам.
Читайте также:  Тренди тік ток 2021

Счетчик электроэнергии

Как узнать свою схему

Для правильного определения и расчета мощности требуется знание нескольких факторов:

  • Количества фаз питания;
  • Способа соединения потребителей.

При однофазном подключении используется два провода:

  • Фазный провод;
  • Нулевой провод.

Для трехфазной сети характерно наличие трех или четырех проводников (подключение с заземленной нейтралью). При этом используется две различных схемы включения:

  • «Треугольник». Каждая нагрузка подсоединяется с двумя соседними. Напряжение каждой фазы подводится к точкам соединения потребителей.
  • «Звезда». Все три потребителя соединяются в одной точке. Ко вторым концам подключаются фазы питания. Это схема с изолированной нейтралью. В схеме с заземленной нейтралью точка соединения потребителей подключается к нулевому проводнику.

Соединение источника и потребителей

Трёхфазное или однофазное подключение

В зависимости от того, какой тип подключения используют, определение потребляемой мощности производится по-разному.

В однофазной сети потребляемая энергия считается по простейшей формуле:

где cosϕ – коэффициент мощности, характеризующий сдвиг фаз между током и напряжением в реактивной нагрузке.

Мощность 3 х фазной сети является суммой потребления по каждой фазе в отдельности. Формула мощности 3 х фазного тока имеет следующий вид:

Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc,

где U, I, cosϕ – напряжение, сила тока и коэффициент мощности в каждой фазе, соответственно.

К сведению. Видно, что в общем случае трехфазное соединение требует большее количество приборов учета.

Иногда посчитать потребление энергии можно по упрощенному варианту. При симметричном потреблении, например, при подключении асинхронного двигателя, токи потребления одинаковы, и формула принимает следующий вид:

где:

  • Uф, Iф – фазные напряжение и ток;
  • Uл, Iл – линейные напряжение и ток.

Асинхронный двигатель

Характеристики трехфазной системы

Трехфазная система электропитания характеризуется несколькими значениями напряжения и тока. Все зависит от того, между какими точками схемы производятся измерения:

  • между фазным проводом и нейтралью – фазное напряжение Uф;
  • между отдельными фазами – линейное Uл.

Соотношение между данными параметрами:

При симметричном распределении нагрузки токи во всех проводах равны. В четырехпроводной схеме (с заземленным нулем) ток в нулевом проводнике отсутствует, поэтому даже при обрыве нуля сеть продолжает нормально функционировать.

В том случае, когда потребление энергии по фазам различается, в нейтральном проводе протекает некоторый ток. Полный обрыв нейтрального проводника вызывает перекос фаз, поэтому напряжение на проводах может измениться в диапазоне от нуля до линейного.

Последствия увеличения сопротивления нейтрали

Реактивный характер нагрузки учитывается коэффициентом мощности cosϕ. Данная величина пришла из теории комплексных чисел, которые используются, когда необходимо рассчитать параметры цепей переменного тока. В случае активной нагрузки cosϕ=1, но, чем более реактивный характер имеют потребители, тем больше коэффициент уменьшается, показывая, как снижается реальная мощность относительно полной.

Важно! Поэтому для правильного расчета и уменьшения нагрузки на генераторное оборудование в реактивных цепях устанавливают корректоры коэффициента мощности. Цепи с корректором приближают коэффициент cosϕ к единице.

Пример расчёта мощностных показателей

Наиболее простым примером может считаться расчет потребления энергии симметричной нагрузкой. Сколько будет потреблять электроэнергии трехфазный асинхронный двигатель, подключенный в сеть с линейным напряжением 380 В, и потребляющий ток 10 А по каждой фазе? Коэффициент мощности cosϕ=0.76. Тогда потребляемая мощность равна:

Более сложный расчет бытовой сети:

  • Фазное напряжение – 220 В;
  • Потребление по линиям – 10 А, 5 А, 2 А;
  • Первые две фазы подключены к активной нагрузке (электроплита, чайник);
  • Третья нагружена на люминесцентные светильники с cosϕ=0,5.

Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc=220∙10+220∙5+220∙2∙0,5=3520 ВА.

Используя онлайн калькулятор расчетов, можно избавиться от большинства ошибок и сократить время вычислений. Требуется лишь правильно ввести данные по текущим параметрам

Измерение мощности ваттметром

Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.

Трехфазный цифровой ваттметр

Варианты измерений:

  • Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
  • Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
  • Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.

Схемы измерения

На практике всегда стараются выполнить нагрузку симметричной. Это, во-первых, улучшает параметры сети, во-вторых, упрощает учет электрической энергии.

Видео

Источник

Расчет трехфазной цепи, соединенной звездой

date image2014-02-02
views image21513

facebook icon vkontakte icon twitter icon odnoklasniki icon

Соединение в треугольник. Схема, определения

Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.

Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.

Читайте также:  Как изменяются при удалении источника света от вакуумного фотоэлемента сила тока насыщения

Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного
в √3 раз.

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Линейный ток равен геометрической разности соответствующих фазных токов.
На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

Iл = √3 Iф при симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (7.2).

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

Ток в нейтральном проводе

1. Симметричная нагрузка . Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 7.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная , RA

Источник



Находим токи трехфазной цепи

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

где определяется характером нагрузки .

Тогда на основании вышесказанного

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Читайте также:  Для неразветвленной цепи переменного тока рис 20

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

Тогда для искомых токов можно записать:

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.

Определить ток в нейтральном проводе.

В схеме предыдущей задачи ; . Остальные параметры те же.

Определить ток в нейтральном проводе.

В задаче 8 нейтральный провод оборван.

Определить фазные напряжения на нагрузке.

В задаче 9 нейтральный провод оборван.

Источник