Меню

Нагрузки в цепях однофазного переменного тока

Цепи однофазного переменного тока (ОПТ)

date image2015-04-01
views image11673

facebook icon vkontakte icon twitter icon odnoklasniki icon

Элементы цепи ОПТ и их свойства

Однофазным переменным током называют ток, меняющийся по закону синуса / косинуса:

Здесь Im — амплитуда колебаний тока; ω=2πν — циклическая частота колебаний; φI — начальная фаза колебаний.

Источниками переменного тока являются генераторы переменного тока, чье напряжение меняется по аналогичному закону. Цепи переменного тока формируются так же, как и цепи постоянного тока, т.е содержат источник электрической энергии и потребителей этой энергии. Эти цепи могут быть простыми и сложными , разветвленными и неразветвленными, с одним или несколькими источниками напряжения. Для токов и напряжений в таких цепях также справедливы первый и второй законы Кирхгофа, законы Ома, Джоуля-Ленца и т.д.

Однако физические процессы в таких цепях намного сложнее и разнообразнее, чем в цепях постоянного тока. Здесь уместна их аналогия с фото и видео: хотя любое видео, технологически, сводится к большой совокупности фотографий, его информационные возможности несопоставимо богаче информационных возможностей фотографий.

Соответственно, математическое описание переменного тока требует более сложного математического аппарата и графического инструментария.

Основными элементами цепи переменного тока являются:

1) источники переменного напряжения, E (U)

4) катушки (индуктивности), L

Первые два типа элементов присутствуют и в цепях постоянного тока. Однако два последних в них не используются : 1) конденсаторы создают разрывы в цепи и не пропускают постоянный ток; 2) катушки пропускают постоянный ток, но обладают в нем нулевым сопротивлением , и, следовательно, не оказывают на распределение токов и напряжений никакого влияния.

Если конденсатор включить в цепь с переменным напряжением, то амперметр зарегистрирует наличие тока. Это значит, что он пропускает переменный ток. Как такое возможно? Причина заключается в том , что разрыв, создаваемый конденсатором в цепи, не является препятствием для электрического поля, через которое заряды на одной пластине конденсатора влияют на заряды другой. При постоянном токе это взаимодействие прекращает ток — заряды, набежавшие на пластину ближайшую к источнику тока, останавливают набегающие от источника заряды путем их отталкивания.

В переменном токе это взаимодействие, наоборот, поддерживает ток, приводя в движение заряды по другую сторону разрыва. Что касается взаимодействия набежавших и набегающих зарядов на пластине, обращенной к источнику тока, то оно вызывает не прекращение тока, а лишь его торможение. В результате конденсатор оказывает сопротивление току и создает на себе падение напряжения.

Если , аналогично, включить в цепь переменного тока катушку, то вольтметр зарегистрирует на ней падение напряжения, что является признаком появления у ней сопротивления. Откуда оно взялось — ведь в постоянном токе катушка обладает нулевым сопротивлением?

Ответ кроется в явлении электромагнитной индукции (ЭМИ). При изменении тока в катушке, изменяется ее магнитное поле, а согласно закону ЭМИ изменение последнего порождает вихревое электрическое поле. Согласно правилу Ленца вихревое поле ЭМИ всегда противофазно полю создающему ток и , следовательно, оказывает ему сопротивление.

Появление в цепях переменного тока катушек и конденсаторов кардинально меняет их (цепей) электрические свойства.

Это проявляется в:

1) расфазировке (рассогласовании) колебаний тока и напряжения;

2) реактивном характере потребления энергии

Первое свойство означает несовпадение динамики изменения тока и напряжения как на конденсаторе, так и на катушке, а именно: когда напряжение по модулю максимально, ток равен нулю, и наоборот. Второе свойство означает принципиально новую форму потребления энергии — и катушка и конденсатор, забирая энергию у источника тока, возвращают ее затем ему обратно.

Реактивностью, реакцией, как известно, называют свойство объекта формировать отклик (реакцию) на внешнее воздействие. Например реактивное движение возникает как результат ответного влияния отбрасываемого объекта на отбрасывающий объект ( ракета, морские моллюски и т.д.). Реактивный характер потребления энергии выражается в последующем отбрасывании от себя полученной энергии.

Расфазировка колебаний тока и напряжения на конденсаторе определяется противоположным характером влияния накопленного им заряда на ток и напряжение:

1) чем больше заряда оказывается на конденсаторе, тем меньше к нему ток, так как набежавшие заряды отталкивают набегающие;

2) чем больше заряда на конденсаторе, тем силнее его электрическое поле, — и тем больше напряжение

Расфазировка колебаний тока и напряжения на катушке определяется противоречивым характером влияния тока на величину вихревого поля ЭМИ:

а) наибольшую ЭДС ЭМИ ток создает при нулевом значении ( в этот момент он, — а следовательно и магнитное поле, — изменяется быстрее всего);

б) наименьшую ЭДС ЭМИ (ноль) ток создает при максимальном значении, когда его рост прекращается.

Наиболее наглядно точный характер расфазировки колебаний тока и напряжения можно показать на временных диаграммах (рис.6, рис.7) Сплошными линиями на графиках показаны синусоиды колебания напряжения, пунктирными — тока.

Рисунок 6 показывает как соотносятся колебания этих параметров на катушке, а рисунок 7 — на конденсаторе. Сдвиг в фазах в обоих случаях одинаков и составляет 90 0 , однако при одной и той же фазе напряжения , фазы токов в катушке и конденсаторе противоположны. Говорят, что напряжение в катушке опережает ток на 90 0 , а на конденсаторе — отстает . Это следует из того, что ток на катушке идет в область положительных значений, с некоторым запаздыванием по отношению к напряжению, а у конденсатора — с опережением.

Физически это объяснимо:

1) в катушке при большом внешнем напряжениивозникает противоположная по знаку эдс ЭМИ — в результате ток в ней подавляется; он начинает нарастать лишь по мере ее ослабевания;

2) в конденсаторе, наоборот — даже при нулевом значении напряжения ток уже достигает максимальной величины, что есстественно: отсутствие напряжения означает отсутствие на конденсаторе зарядов и, как следствие, – отсутствие какого-либо сопротивления набегающим зарядам.

Наконец на рисунке 8 показаны ко-лебания тока и напряжения на резисторе. Здесь никакой расфазировки не наблюдается, так как падение напряжения создается самим током (а не зарядами или ЭДС, как у конденсатора или катушки).

Векторные диаграммы цепей ОПТ

Рассогласование колебаний тока и напряжения на реактивных элементах ОПТ (т.е. катушке и конденсаторе) резко усложняет их математическое и даже наглядное описание. Действительно, если электрическая цепь состоит из большого количества таких разнородных элементов, то, например, при втекании в один провод пяти расфазированных токов, суммарный ток будет представлять «кашу» из синусоид и определение суммарного тока может оказаться весьма сложной задачей ( ситуация оказывается похожей на описание поведения поверхности воды под дождем).

Для решения этой проблемы используется метод векторных диаграмм (ВД). На них колебания каждого электрического параметра ассоциируют с вращающимся вектором ( например, вращающийся на нити шарик создает на стене, — при его освещении, — колеблющуюся тень). Если в один провод втекает несколько токов, то на ВД для такого провода рисуют соответствующее количество векторов. Так как все токи колеблются , то соответствующие им вектора на ВД должны находиться в совместном вращении. Однако важнейшей особенностью колебаний любых электрических параметров в цепях ОПТ является одинаковость их периодов.

На ВД это выражается в одинаковой скорости вращения всех векторов. Последнее означает неподвижность этих вектров относительно друг друга, а следовательно непринципиальность самого факта вращения. Это позволяет изобразить все колеблющиеся электрические параметры в виде неподвижных векторов.

Наличие вращения, тем не менее, учитывают через:

1) увязывание угла, под которым рисуется вектор на графике, с циклической частотой и фазой колебания всех электрических параметров φ = ω?t + φ =2πν?t + φ ;

2) выбором положительного отсчета углов и направления вращения векторов ( теперь уже «воображаемого» ) против часовой стрелки.

Если требуется учесть колебания всех электрических параметров цепи, то независимо от того на каких участках полной цепи они появляются, все их можно отобразить на одно й диаграмме, поскольку принципиальное значение имеет лишь временная расфазировка

Пространственная расфазировка в цепях ОПТ отсутствует из-за огромной скорости распрос-транения электромагнитных взаимодействий, т.е. в любой точке цепи в заданны й момент времени все значения рассматриваемого параме-тра имеют одну и туже фазу колебания.

Предположим, что втекающие в один провод несколько токовмы изобразили в виде нескольких векторов а, b, c (рис.9) . Каким образом можно найти полный ток ? Ответ на этот вопрос теперь уже не представляет сложности — для этого используем правило векторного сложения, которое имеет несколько вариантов применения:

Читайте также:  Умер в ванной от удара тока

1) в виде известного правила «параллелограма»;

2) в виде правила последовательного соединения складываемых векторов друг за другом (начало последующего вектора соединяем с концом предыдущего — итоговый вектор соединяет начало самого первого вектора с концом самого последнего (рис.9).

Если все сказанное применить теперь к векторному способу отображения колебаний тока и напряжения на катушке, конденсаторе и резисторе, то получим ВД на рис.10, рис.11, рис.12. (длинный вектор соответствует напряжению, короткий — току). На рис. 10 видно, что в катушке значениям тока и напряжения, отмеченным черными кружками на временнóй диаграмме, соответствует положения векторов на левой круговой диаграмме; правая круговая диаграмма иллюстрирует точную ориентацию и угол между векторами напряжения и тока для катушки. Аналогичное соответствие между временными значениям тока и напряжения, и положениями векторов на векторных диаграммах, иллюстрируют графики для конденсатора (рис.11) и резистора (рис.12)

Законы Ома для элементов R-L-C цепей ОПТ

Математический анализ зависимости тока и напряжения на различных эле-ментах переменной цепи показывает, что для них справедлив закон Ома.

1. На резисторе закон Ома записывается точно также как и для постоянного тока — формула справедлива для любого момента времени:

2. На катушке закон Ома соблюдается только для амплитудных значений, или для тех значений тока и напряжения, которые имеют одну и ту же фазу:

где — индуктивное сопротивление катушки

Из формулы следует , что сопротивление катушки тем больше, чем больше ее индуктивность и циклическая частота переменного тока. Это согласуется и с физической природой сопротивления катушки переменному току. Действительно, индуктивность L является показателем величины магнитного поля , создаваемого током ( Ф = LI), а ω — показателем скорости его изменения. И то и другое в прямой пропорции увеличивают вихревую ЭДС, создающую сопротивление току.

2. На конденсаторе закон Ома также соблюдается только для амплитудных значений, или для тех значений тока и напряжения, которые имеют одну и ту же фазу:

, где — емкостное сопротивление конденсатора

В этом случае из формулы вытекает, что сопротивление конденсатора наоборот уменьшается — как с ростом частоты, таки с ростом емкости конденсатора. Это объясняется тем, что с ростом частоты заряды не успевают набежать на обкладки конденсатора и, следовательно, — создать заметное сопротивление набегающим зарядам. Рост емкости, также вызывает уменьшение сопротивления, поскольку он означает снижение, тем или иным способом, величины взаимного отталкивания зарядов.

Указанные графические методы и математические формулы позволяют перейти к описанию и анализу конкретных цепей переменного тока. Для образовательных целей наиболее принципиальными среди них являются последовательная и параллельная R-L-C-цепи.

Последовательная R-L-C цепь ОПТ

Для цепей ОПТ, как и для цепей постоянного тока, расчет сводится к определению токов и напряжений на всех участках цепи. В данном случае, при известном напряжении на генераторе (U) , его циклической частоте ω, требуется определить ток в цепи (I) и напряжения на всех ее участках(UR, UL, UC). Слож-ность расчета заключается в неодинако-вости фаз колебаний рассматриваемых параметров. Как уже указывалось выше, учет этих фаз можно осуществить через построение векторов.

Из схемы (рис.13) следует, что через все элементы цепи проходит один и тот же ток — следовательно, с него и надо начинать построение диаграммы. Так как в реальности все вектора вращаются, то рассмотрим схему в тот момент, когда вектор общего тока находится в горизонтальном положении и направлен вправо (рис.14): для всех последующих расчетов это не имеет никакого значения.

Выбор ориентации вектора тока предопределяет ориентацию напряжений на резисторе (всегда параллелен току), на катушке (направляем вверх – опережает при вращении ток) и на конденсаторе (направляем вниз — отстает при вращении от тока).

Общее напряжение на генераторе (U) получим, сложив все напряжения векторным образом, а связь между суммарным напряжением и составляющими найдем из получившегося треугольника напряжений по теореме Пифагора:

Используя законы Ома для отдельных элементов

и подставляя их в полученную формулу, получим:

Так как ток во всех элементах одинаков, его можно вынести за квадратный корень, индуктивное и емкостное сопротивления выразить через Lи С:

Полученное выражение можно рассматривать как закон Ома для последовательной R-L-C цепи. Параметр Zназывают полным или комплексным сопротивлением всей цепи.

Зная значение Z, нетрудно рассчитать напряжения на всех участках цепи:

Из чертежа видно, что между векторами напряжения на генераторе и полным током существует угол φ, который по своему физическому смыслу представляет собой не что иное, как сдвиг фаз между колебаниями тока и напряжения. Из чертежа следует, что он может быть вычеслен через тангенс треугольника напряжений:

Или сокращая , ток и переходя к основным параметрам элементов, получим окончательное выражение:

Из чертежа видно, что по модулю угол φ, в общем случае, может меняться от 0 до . По установленным в математике правилам угол считается положительным, если он отсчитывается от горизонтальнойоси ОХ, направленной вправо, против часовой стрелки. В электротехнике сдвиг фаз считается положительным, если при вращении против часовой стрелке вектор напряжения оказывается впереди (левее) вектора тока, т.е. если напряжение опережает по фазе ток. Поскольку такое положение вещей всегда имеет место в катушке – индуктивности — то любая цепь, где напряжение опережает ток называется активно-индуктивной , а сдвиг фаз считается положительным

0 ХС угол φ оказывается отрицательным, а из векторной диаграммы — что ток при этом опережает напряжение по фазе. Это соответствует активно-емкостной цепи.

При ХL 0 ( положительный знак φ означает, что формула для тока непосредственно описывает активно-емкостную цепь; для активно-индуктивной цепи φ надо взять со знаком «- »). Тогда обозначая непоглощаемую, т.е. реактивную мощность буквой Q, запишем:

Далее используем известную алгебраическую формулу:

Аналогичным образом формула мощности содержит постоянную ( знак «-» связан с выбором опережающего характера тока) и переменную составляющие.

Так как переменные составляющие не представляют интереса , мы приходим окончательно к двум важнейшим формулам мощности переменного тока:

Учитывая известное выражение , введем понятие полной мощности переменного тока:

Из формул следует что реальные мощности оказываются в 2 раза меньше максимально возможных. В связи с этим в электротехнике введены понятия действующих значений тока и напряжения:

Во всех дальнейших формулах подразумеваются только действующие значения токов и напряжений и индексы при них не ставятся.

Источник

Как посчитать силу тока через мощность электроприборов: нагрузка в однофазных и трехфазных сетях

Правильно рассчитать силу тока необходимо для многих работ, связанных с электропроводкой и проектированием схемотехнических и бытовых приборов. Ошибки или пренебрежение такими расчётами могут иметь серьезные последствия, так как от силы и мощности тока зависит тип прокладываемого кабеля, правильный выбор которого определяет пожарную безопасность и экономическую целесообразность.

Принципы расчета тока

Знать в амперах силу тока, протекающего в цепи, важно для расчета сечения провода, которым прокладывается проводка, и выбора автомата, предохраняющего сеть от перегрузок. Большее, чем нужно, значение сечения вызывает дополнительные затраты, меньшее — вызовет перегрев электропроводки, что чревато расплавлением изоляции кабеля и пожаром.

Правильный выбор автомата также важен, так как большой запас по току окажется бесполезен, если выключатель сработает поздно, и оборудование успеет выйти из строя, а слишком маленький запас вызовет очень частое срабатывание аварийного отключения при повышении потребляемой мощности в допустимых пределах.

По закону Ома можно рассчитать ток как отношение напряжения между двумя точками к сопротивлению этого участка цепи (сопротивление самого провода). Этот параметр у провода зависит от его материала, длины и сечения. При использовании стандартных материалов (алюминий или медь) единственным параметром, на который можно влиять остается сечение проводника. А он зависит от предполагаемого протекающего тока.

Сила тока в розетке на 220 В обычно не превышает 6 ампер. Это значит, что суммарная мощность подключенных к розетке электроприборов не должна превышать 1300 Вт. В противном случае требуется укладка особых проводов с увеличенным сечением.

Вычисление мощности

Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.

Читайте также:  Ток 25а максимальная нагрузка

При постоянном напряжении

Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:

где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.

Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.

Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.

При переменном напряжении

Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:

  1. Меньшие затраты при передаче по ЛЭП;
  2. Простое создание повышающих и понижающих напряжение устройств;
  3. Отсутствие полярности.

А для питания устройств постоянного тока применяются разного рода выпрямители.

Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:

где cosφ определяет характер нагрузки.

В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.

Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.

Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:

Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).

В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:

  • Более экономная передача электричества на дальние расстояния;
  • Уменьшение затрат при создании электродвигателей 3-х фазной системы;
  • Равномерность механической нагрузки на электрогенератор.

Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:

P = 1,73 ⋅ I ⋅ U ⋅ cosφ.

Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.

Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:

Выбор электроприборов

Чтобы узнать, какой бытовой прибор подойдет для электропроводки дома, а для какого лучше использовать промышленную, нужно обратить внимание на его мощность. Этот параметр всегда написан в руководстве по эксплуатации или технических характеристиках устройства.

Стоит насторожиться, если мощность указана больше 1,5 кВт, так как для таких приборов нужно использовать увеличенное сечение проводов питающей сети. Обычно домашние электроприборы имеют меньшую мощность.

Исключение могут составить стиральные машины, электроплиты, некоторые виды пылесосов. Дома с электроплитами всегда имеют для них отдельную проводку, а для питания стиральной машины лучше протянуть отдельный провод увеличенного сечения.

Далее следует определиться с выбором автоматического выключателя для групп потребителей электротока. Его следует выбирать именно на группу, с целью экономии места в распределительном щитке, и чтобы быть более свободным в подключении приборов к разным розеткам. Какие группы лучше выбрать:

  • Электроплита;
  • Стиральная машина и водонагреватель;
  • Остальные розетки и освещение.

В домах с электроплитами наиболее высоким потреблением будет обладать именно плита. Ее мощность оценивается в 10 кВт, что при стандартном напряжении 220 В означает ток потребления 45 А, cosφ здесь равен 1. На электроплиту нужен отдельный автомат, поэтому здесь он выбирается его на 50 ампер.

Большим токопотреблением отличается также и стиральная машина. Стандартная стиралка потребляет 2,5 кВт, что соответствует 12,5 А. Несмотря на cosφ = 0,8 у электродвигателя стиральной машины, в ней большое количество электроники, поэтому для расчета берем cosφ = 1. Еще большая мощность у водонагревателя — до 8 кВт. Если предполагается использовать их одновременно со стиралкой — стоит брать автомат повышенного ампеража, так как суммарная мощность двух этих приборов составит 10,5 кВт, то есть нужен еще один автомат на 50 А. А лучше сделать два отдельных автомата: 40 А — на водонагреватель, и 15 А — на стиральную машину.

Остальные розетки и освещение можно определить в отдельную группу. Их общее энергопотребление оценивается в 1,5 кВт, то есть автомата на 10 А будет достаточно для третьей группы.

Приборы для измерения величин

Измерения электротехнических величин производятся специальными устройствами. Ток измеряется амперметром, напряжение — вольтметром, а мощность можно померить ваттметром, либо вычислить ее по формуле из значений первых двух значений.

С помощью онлайн-калькулятора можно вычислить не только ток при известной мощности потребителей, но и сечение нужных для электропроводки проводов.

Вычисление силы тока и параметров проводки по мощности потребителей электроэнергии — очень важная часть проектирования здания или квартиры, поэтому нужно подойти к этому взвешенно и ответственно.

Источник

Особенности переменного тока

26 октября 2019

Время на чтение:

Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.

Нормы мощности в сети переменного тока

Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.

Что такое мощность переменного тока

Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.

Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.

Мощностные нормы в сети переменного тока

Характеристики

Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.

Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.

Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.

Характеристики переменного тока

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Читайте также:  Опыт химические источники электрического тока

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

Формула мощности в цепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.

Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.

В трехфазной цепи

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.

Источник



2.4. Нагрузки в цепях переменного тока

Активное сопротивление ( r) – нагрузка, аналогичная той, которая использовалась в цепях постоянного тока.

Реактивные сопротивления (X) – нагрузки, которые не использовались в цепях постоянного тока. Они используются только в цепях переменного тока и не потребляют активную мощность.

Индуктивность

Индуктивность (первый вариант определения) – это свойство физического объекта (катушки) запасать в себе энергию магнитного поля и отдавать её при следующих условиях: если ток и напряжение катушки одного знака, энергия запасается, если же разного знака, то энергия катушкой отдается.

Индуктивность (второй вариант определения) – это коэффициент пропорциональности между потокосцеплением и током, вызвавшем это потокосцепление.

Индуктивность на схемах обозначается буквой L и измеряется в генри (Гн).

Пусть дана катушка (рис. 2.5). Если контур интегрирования (k) направить по силовой линии так, чтобы он охватывал все витки катушки, то закон полного тока при Н = const, можно записать: H k = w i

Магнитная индукция связана с напряженностью: В = m mН, где m – относительная величина, показывающая, во сколько раз проницаемость данной среды больше магнитной проницаемости вакуума; m – магнитная проницаемость вакуума.

Потокосцепление (y) определяется потоком: , где .

Если Н = const, то , и индуктивность, как коэффициент пропорциональности между потокосцеплением и током, равна:

Тогда становится очевидным, что L – это параметр, зависящий от числа витков, геометрических размеров катушки и магнитной проницаемости среды.

Электрическая ёмкость

Этот элемент так же, как и индуктивность не потребляет активной мощности, его мгновенная мощность лишь колеблется: то запасается, то отдается.

Аналогично индуктивности емкость также имеет два определения:

1) электрическая ёмкость – это свойство физического объекта (в данном случае конденсатора) запасать в себе энергию электрического поля и отдавать её во внешнюю цепь при определенных соотношениях напряжения и тока. Если мгновенное напряжение (u) и мгновенный ток (i) конденсатора одного знака, энергия им запасается, если u и i разных знаков, энергия отдается;

2) электрическая ёмкость – это коэффициент пропорциональности между зарядом (q) и напряжением (u) на обкладках конденсатора, вызвавшем этот заряд.

Это определение вытекает из формулы: q = Cu.

Ток (i) через конденсатор возникает тогда, когда изменяется заряд на его обкладках во времени: , и аналогичен возникновению напряжения на индуктивности: .

Запишем основные величины и формулы для определения ёмкости конденсатора (рис. 2.6):

формула связи электрического смещения с напряженностью электрического поля:

Если напряженность магнитного поля неизменна во всем объеме конденсатора, то . Напряжение на обкладках с учетом поставленных условий равно:

тогда , а емкость конденсатора:

В рассматриваемых выводах: D – электрическое смещение; H- напряженность электрического поля; e- диэлектрическая проницаемость среды; S – площадь пластин конденсатора; d – расстояние между пластинами.

Таким образом, ёмкость линейного конденсатора не зависит от заряда, от напряжения, а определяется геометрическими размерами и средой между его обкладками.

Источник