III. Основы электродинамики
Тестирование онлайн
Электрический ток в жидкостях
Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.
В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.
Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит
Электрохимический эквивалент вещества — табличная величина.
Второй закон Фарадея:
Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.
Электрический ток в металлах
При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.
Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.
Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.
Применение электрического тока в металлах
Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.
Прохождение электрического тока через газ называется газовым разрядом.
В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».
Между электродами сварочного аппарата возникает дуговой разряд.
Дуговой разряд горит в ртутных лампах — очень ярких источниках света.
Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!
Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.
Электрический ток в вакууме
А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии — испускания веществом электронов при нагревании.
Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод, холодный электрод, собирающий термоэлектроны — анод.
Источник
Электродные (жидкостные) нагреватели
Влияние формы отражателя на плотность потока излучения
Отражатель | Плотность потока, 1ּ10 4 Вт/м 2 | Отражатель | Плотность потока, 1ּ10 4 Вт/м 2 |
Нет отражателя | 12,5 | Гиперболический | 33,6 |
Плоский | 16,7 | Параболический | 41,9 |
Сферический | 29,3 |
Отражатели изготавливаются из материалов, имеющих большой коэффициент отражения в области ИК-спектра. Применяются в основном два вида материалов: листовая сталь с гальваническим полированным покрытием хромом или никелем и листовой алюминий, который может иметь различные покрытия. Наиболее широко применяются анодированные и просто полированные алюминиевые отражатели с коэффициентом отражения 98 %.
Электродный нагрев представляет собой непосредственное прохождение электрического тока промышленной частоты (50 Гц) через нагреваемую среду. В этом случае непосредственно в нагреваемой среде, обладающей определенной проводимостью (сопротивлением), происходит выделение теплоты при прохождении через нее электрического тока. Электрический ток подводится к нагреваемой среде с помощью электродов. Соответственно основным конструктивным элементом этих нагревателей являются электроды.
Если осуществляется нагрев пищевого продукта непосредственно электрическим током при контактировании его с электродами, то такой нагрев называется электроконтактным. Электроконтактный нагрев представляет собой объемный нагрев, при котором возрастает концентрация энергии в единице объема, что приводит к резкому сокращению времени тепловой обработки. Однако для осуществления электроконтактного нагрева электроды необходимо подводить индивидуально к каждому изделию, а процесс тепловой обработки является не управляемым и может быть использован только для разогрева кулинарной продукции.
Электроконтактный нагрев прост по устройству, ремонтопригоден, практически безынерционен и имеет высокий к. п. д. Однако этот вид нагрева не нашел применения в общественном питании в связи с тем, что металл с электродов переносится в пищевой продукт и часть продукта соприкасавшаяся с электродами будет не пригодна в пищу. Кроме того, в электроконтактном аппарате для тепловой обработки значительного количества одновременно нагреваемых изделий, чтобы обеспечить надежный подвод электрической энергии к каждому изделию, кулинарная продукция должна иметь строго стандартные размеры, которая в общественном питании практически отсутствует.
Если непосредственно электрическим током осуществляется нагрев воды (рис. 4.13), поместив с нее электроды, то такой нагрев называется электродным. Мощность (P) такого нагревателя определяется по формуле
где U – подведенное к электродам напряжение, В;
R – сопротивление столбы жидкости между электродами, Ом.
Сопротивление любого проводника определяется из выражения
где ρ – удельное сопротивление материала проводника (в данном случае электролита), Омּм;
l – длина проводника (расстояние между электродами), м;
F – сечение проводника (площадь электрода), м 2 .
Подставив значение сопротивления в формулу 4.12 получим
Так как напряжение в сети предприятий общественного питания есть величина постоянная, то мощность электродного нагревателя будет зависеть от удельного сопротивления электролита (воды), размеров электродов и расстояния между ними.
Следует учитывать, что удельное сопротивление электролита уменьшается с ростом температуры, что приводит к возрастанию мощности нагревателя. Кроме того, при закипании воды появляются пузырьки пара в сечении, по которому протекает электрический ток, за счет чего уменьшается его сечение и соответственно мощность.
Как показывает исследование, удельное сопротивление воды в процессе нагрева падает со 100 до 40 %. При этом минимальное значение находится при температуре воды 100 °С. Соответственно при пуске аппарата происходит плавный его запуск, так как его пусковая мощность будет значительно меньше номинальной.
Электродный нагрев прост по устройству, ремонтопригоден, практически безинерционен и имеет высокий к. п. д. Однако электроды имеют небольшой срок службы за счет переноса металла в электролит под воздействием электрического тока, а при осуществлении технологического процесса возникают сложности, так как с изменением температуры и концентрации электролита меняется его удельное сопротивление и, соответственно, мощность электродных нагревателей. Кроме того, возникает возможность появления опасного для жизни человека потенциала на корпусе аппарата. Все это ограничивает использование электродного нагрева в общественном питании.
Несмотря на указанные недостатки, электродный нагрев иногда используется в предприятиях общественного питания для получения горячей воды для технических целей и в парогенераторах некоторых конструкций зарубежных пищеварочных котлов.
В водонагревателях проточного типа электродные нагреватели обычно представляют собой соосно размещенные два цилиндрических электрода. Водопроводная вода, протекающая между цилиндрическими электродами, нагревается проходящим через нее электрическим током. Размеры электродов и расстояние между ними рассчитываются исходя из напряжения в сети, необходимой мощности и удельного сопротивления нагреваемой воды.
Для электродных нагревателей, устанавливаемых в парогенераторах, например пищеварочных котлов, в качестве электролита обычно используется раствор дистиллированной воды с определенным количеством соды (Na2CO3). Концентрация раствора выбирается исходя из обеспечения необходимого удельного электрического сопротивления электролита. Обычно для электродных парогенераторов пищеварочных котлов употребляется вода с содержанием солей от 2 до 8 %.
Электроды в парогенераторе обычно изготавливают из металлических полос в форме спирали закрепленных на диэлектрических подставках (рис. 4.14) на съемном фланце. Фланец с электродами жестко крепится к дну парогенератора через герметизирующую прокладку болтами с гайками, для чего во фланце имеются соответствующие отверстия. Подвод электрической энергии к электродам осуществляется через проходные изоляторы. В качестве материала для электродов используется медь, латунь, иногда, нержавеющая сталь. Для осуществления регулирования технологического режима тепловой обработки в блоке нагревателей парогенератора размещают шесть электродов: три больших и три малых. Малые электроды используются для осуществления режима слабого нагрева, обеспечивающего режим «тихого» кипения.
Питание котла осуществляется от трехфазной сети напряжением 220 или 380 В. Одни и те же электроды могут быть использованы, при условии заливания в парогенератор различной концентрации электролита, для различных напряжений питающей сети.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Обзор ионных котлов — греем воду электротоком
В этой статье: электродный котел — детище оборонных предприятий; как работает ионный котел; можно ли нагреть воду без источника тепла; понижаем омическое сопротивление — добавляем в воду соль; плюсы и минусы ионных котлов; устройство электродного котла; как правильно установить электродный котел; какие отопительные приборы можно использовать в контуре с ионным котлом, а какие — нет; производители и цены; в завершении — нюансы установки ионных котлов.
- История и принцип работы ионного (электродного) котла
- Характеристики ионных (электродных) котлов
- Устройство и установка электродного котла
- Ионный котел — цены и производители
- В завершении
Сколько способов отопления дома при помощи электроэнергии вам известно? Чаще всего приходит на ум котел с водяным тэном — обладая высоким сопротивлением, нихромовая нить внутри такого тэна нагревается, передавая тепло наполнителю трубки, затем металлической оболочке и, наконец, воде. Почему бы не упростить задачу и не нагревать теплоноситель, минуя посредника, ведь можно же сделать это с помощью примитивных электродов из двух бритвенных лезвий, присоединив к ним провода и подключив к электропитанию? Именно из этой логики исходили создатели первых моделей ионных (электродных) котлов, изначально разработанных для нужд ВМФ СССР.
История и принцип работы ионного (электродного) котла
Данный тип отопительных котлов был создан в середине прошлого века предприятиями оборонного комплекса для нужд подводного флота СССР, в частности — для отопления отсеков подлодок с дизельными двигателями. Электродный котел полностью соответствовал условиям заказа подводников — имел крайне малые для обычных отопительных котлов размеры, не нуждался в вытяжке, не создавал шумов при работе, эффективно нагревал теплоноситель, в роли которого более всего подходила обычная морская вода.
К 90-м годам заказы для оборонки резко сократились в объемах, вместе с этим были сведены к нулю потребности военного флота в ионных котлах. Первая «гражданская» версия электродного котла была создана инженерами А.П. Ильиным и Д.Н. Кунковым, получившими соответствующий патент на свое изобретение в 1995 году.
Принцип работы ионного котла основан на прямом взаимодействии теплоносителя, занимающего пространство между анодом и катодом, с электрическим током. Прохождение электрического тока через теплоноситель вызывает хаотичное движение положительных и отрицательных ионов: первые движутся к отрицательно заряженному электроду; вторые — к заряженному положительно. Постоянное перемещение ионов в сопротивляющейся этому движению среде вызывает быстрый нагрев теплоносителя, чему особенно способствует перемена ролей у электродов — каждую секунду их полярность меняется 50 раз, т.е. каждый из электродов в течение одной секунды 25 раз будет анодом и 25 — катодом, поскольку они подключены к источнику переменного тока частотой 50 Гц. Следует отметить, что именно столь частая смена заряда у электродов не позволяет воде разложиться на кислород и водород — для электролиза необходим постоянный электроток. С возрастанием температуры в котле повышается давление, вызывающее циркуляцию теплоносителя по отопительному контуру.
Таким образом, электроды, установленные в емкости ионного котла, напрямую не участвуют в нагреве воды и не нагреваются сами — за повышение температуры воды отвечают положительно и отрицательно заряженные ионы, расщепленные под воздействием электротока из молекул воды.
Важным условием эффективной работы ионного котла является наличие омического сопротивления воды на уровне не более 3000 Ом при 15°С, для чего этот теплоноситель должен содержать определенное количество солей — изначально электродные котлы создавались под морскую воду. То есть, если залить в отопительную систему дистиллированную воду и попытаться нагреть ее при помощи ионного котла — никакого нагрева не будет, поскольку в такой воде соли полностью отсутствуют, а значит, не возникнет электрической цепи между электродами.
Характеристики ионных (электродных) котлов
Обладая присущими электрическим котлам положительными характеристиками, данный тип котлов имеет и ряд собственных. Отмечу все плюсы:
- высокий КПД, близкий к 100% (впрочем, любой электронагреватель имеет КПД не ниже 96%);
- крайне малые размеры при высокой мощности, по сравнению с любыми другими котлами;
- не требуется дымоход;
- способен самостоятельно поднять давление в контуре отопления;
- в отличие от котлов с тэнами, полностью отсутствует опасность аварии при недостаточном уровне теплоносителя в емкости котла — недостаток теплоносителя приведет лишь к прекращению работы котла, поскольку не будет электрической цепи между электродами;
- крайне малая инертность позволяет эффективно управлять температурными режимами во время работы котла при помощи автоматики, в результате достигается наименее энергозатратная работа отопительной системы — температура в обогреваемых помещениях всегда будет на том уровне, который задан автоматическому контроллеру;
- перепады напряжения в электросети не наносят вреда ионному котлу — меняется лишь его мощность, работа не прекращается;
- допускается установка в качестве дополнительного источника тепловой энергии, установка нескольких ионных котлов одновременно;
- полностью отсутствует негативное воздействие на окружающую экологическую обстановку.
Минусы электродного котла:
- потребляет только переменный ток, при постоянном токе произойдет электролиз воды;
- высокие требования к электролитическим характеристикам теплоносителя, при их изменении качество работы (выработка тепла) резко снижается. Необходим контроль за электрической проводимостью теплоносителя;
- требует обязательного заземления (впрочем, как и любой нагревательный прибор с водяным тэном). При этом риски поражения электротоком в случае пробоя изоляции выше, чем у тэновых водонагревателей;
- температура нагрева теплоносителя не должна превышать 75°С, иначе энергопотребление котла серьезно возрастет;
- образование накипи на электродах снижает мощность котла, поскольку препятствует ионизации теплоносителя;
- высокие требования к качественным характеристикам отопительных приборов;
- потребность в оснащении отопительной системы циркуляционным насосом;
- износ электродов, вызванный переменным напряжением тока, требующим их периодической замены;
- в завоздушенном отопительном контуре, содержащем теплоноситель-электролит, многократно ускорятся коррозийные процессы;
- в одноконтурной системе использование нагретой воды для бытовых нужд недопустимо;
- пусконаладочные работы требуют привлечения специалистов — самостоятельно понизить омическое сопротивление воды с повышением ее проводимости до оптимального уровня, практически невозможно;
- электропроводность теплоносителя в процессе эксплуатации изменяется, необходимо ее контролировать, а значит, обладать соответствующими знаниями и оборудованием.
Устройство и установка электродного котла
Он имеет довольно простую конструкцию, в которой особое внимание уделено защите от утечки электрического тока: цельнотянутая стальная труба в качестве корпуса, поверх ее покрывает электроизоляционный слой полиамида; патрубки ввода и вывода теплоносителя; клеммы подачи питания на корпус и заземления; электрод из особого сплава (трехфазные котлы оснащены тремя электродами), изолированный полиамидными гайками; дополнительная изоляция резиновыми прокладками в местах разъемов.
Внешне бытовой ионный котел имеет цилиндрическую форму, его диаметр обычно не превышает 320 мм, длина — 600 мм, а вес — 12 кг. Наименьшая мощность — 2 кВт (для отопления помещений порядка 80 м 3 ), максимальная — 50 кВт (отопление помещений около 1600 м 3 ). Однофазные котлы имеют мощность от 2 до 6 кВт, трехфазные — от 9 до 50 кВт. Энергопотребление котла достигает номинального уровня (заявленной производителем мощности в киловаттах) при достижении температуры внутри него на уровне 75°С — при меньших температурах энергопотребление ниже, поскольку в более холодном теплоносителе проводимость тока ниже. Следует отметить, что температура в 75°С является оптимальной для ионных котлов, поскольку при развитии более высокой температуры энергопотребление котлов превысит заявленное в техпаспорте.
В комплекте с электродным котлом идет система автоматического управления (контроллер), включающая в себя электронный терморегулятор, автоматическую защиту от скачков напряжения в электросети и блок пускателя. Некоторые модели контроллеров допускают как непосредственное управление, так и удаленное, по gsm-каналам. Именно контроллер обеспечивает заявляемую производителями ионных котлов экономию электроэнергии — в отличие от нагрева воды при помощи тэнов, электродный нагрев позволяет в более короткий срок изменять температуру теплоносителя, т.к. имеет малую инертность.
В открытой отопительной системе с естественной циркуляцией теплоносителя, последний движется вверх по трубам из-за температурного расширения и давления в ионном котле, поступает в радиаторы и остывает, затем возвращается по трубопроводу обратки в котел, где нагревается и повторяет цикл вновь. Закрытая система отопления дополнительно оснащается расширительным баком-экспанзоматом и циркуляционным насосом, необходимым на начальном этапе прогрева теплоносителя.
При установке электродного котла обязательным требованием является комплектация отопительного контура в наиболее верхней его точке группой безопасности — автоматическим воздухоотводчиком, манометром, подрывным (обратно-предохранительным) клапаном. В системах открытого типа регулирующая или запорная арматура должна быть установлена только после расширительного бачка, т.е. участок трубопровода между выходом из котла и до расширительного бачка не должен содержать какой-либо запорной арматуры! В системах закрытого типа запорная арматура устанавливается на отрезке трубопровода после расширительного бачка и до ввода в котел. Если же сразу после выхода из котла установлена группа безопасности, то запорную арматуру можно устанавливать до экспанзомата — расширительный бачок в этом случае нужно установить на участке обратки.
Ионные котлы любой модели устанавливаются в отопительную систему строго вертикально, с собственным креплением к стене. Первые 1200 мм обвязки на подаче теплоносителя в котел выполняются из металлической не оцинкованной трубы, далее допускается использование металлопластиковых труб.
Надежное заземление ионного котла обязательно, поскольку в случае утечки токов эту проблему с помощью УЗО не решить. Заземляющий медный провод должен иметь сечение от 4 до 6 мм, его сопротивление не должно быть более 4 Ом — подключение проводника выполняется к нулевой клемме, расположенной в нижней части корпуса котла. Заземление должно соответствовать требованиям ПУЭ.
В идеальном варианте предполагается установка электродного котла в новую отопительную систему, предварительно промытую чистой водой. При врезке котла в существующий контур необходима его тщательная промывка водой с добавленными в нее спецсредствами — их перечень и пропорции описаны в техническом паспорте на котел, каждый производитель настаивает на использовании определенных ингибиторов. При не соблюдении данного условия отложения солей (накипь) помешают точной настройке омического сопротивления теплоносителя.
Выбирая отопительные радиаторы для системы с ионным котлом, обратите пристальное внимание на их потребление теплоносителя в литрах — нужно выяснить, сколько литров потребляет один радиатор, затем вычислить общий литраж, исходя из необходимого количества радиаторов. Следует отметить, что особо вместительные отопительные приборы не подойдут, т.к. такая отопительная система будет потреблять свыше 10 л теплоносителя на киловатт установленной мощности котла, что вынудит его работать безостановочно, а это не выгодно с позиции затрат электроэнергии. В идеале общий литраж отопительной системы должен составлять порядка 8 л на киловатт мощности.
По материалу изготовления для отопительных систем с электродным котлом наиболее подходят биметаллические и алюминиевые радиаторы. При выборе алюминиевых отопительных приборов важным критерием является происхождение алюминия — первичный ли он (т.е. получен из природных материалов — бокситов, алунитов, нефелинов и т.д.) или же вторичный, переплавленный из вторсырья. Проблема в том, что более дешевые радиаторы из вторичного алюминия выполнены из сплава с большим содержанием примесей, повышающих омическое сопротивление теплоносителя.
В открытые системы отопления правильным будет устанавливать отопительные приборы из алюминия с внутренним полимерным покрытием, снижающим коррозию, в закрытых системах такие радиаторы не понадобятся — коррозионные процессы активизируются при наличии воздуха в объеме теплоносителя, т.е. содержание солей в нем не является причиной коррозии.
Чугунные радиаторы для отопительных систем с нагревом теплоносителя от электродного котла подходят менее всего, поскольку сильно загрязнены изнутри и грязевые частицы повлияют на проводимость тока. Кроме того, чугунные радиаторы потребляют значительный объем теплоносителя, что может превысить установочную мощность данной модели ионного котла — потребуются его более мощные модели. Производители электродных котлов допускают использование чугунных радиаторов при соблюдении следующих условий: они произведены по евростандарту (т.е. в Турции или Чехословакии); на обратке, перед вводом в котел, в трубопроводе установлены отстойники-грязевики (уловители шлама) и фильтры грубой очистки.
Ионный котел — цены и производители
В России и странах СНГ представлены электродные котлы следующих производителей — российская ЗАО «Фирма «Галан» (одноименный брэнд), латвийская ООО «Stafor EKO» (одноименный брэнд) и украинская СПД-ФО Гончаренко О.А. (брэнд «ЭОУ» (энергосберегающая отопительная установка)).
Стоимость электродного котла зависит от его мощности — котел мощностью в 2 кВт в среднем обойдется покупателю в 3000 руб. Следует учитывать, что комплект необходимой автоматики реализуется, как правило, отдельно — его стоимость составит порядка 6500 руб., т.е. вдвое дороже самого котла.
Срок гарантии на электродный котел, в зависимости от производителя, составляет от года до 2-х лет. Средний срок службы таких котлов — около 10 лет, при условии соблюдения эксплуатационных требований к теплоносителю и своевременной замены электродов (примерно каждые 2–4 года).
В завершении
Создавая отопительную систему, основанную на нагреве теплоносителя от электродного котла, необходимо соблюсти следующие нюансы:
- потребление электроэнергии котлом значительно выше в случае установки в ранее используемый контур отопления. Лучше устанавливать ионный котел в контур, созданный специально под него;
- при использовании в качестве теплоносителя антифриза, следует особое внимание уделить разъемным соединениям, поскольку его текучесть выше, чем у воды;
- все трубы, образующие отопительный контур, стоит обернуть слоем теплоизоляции — эта мера облегчит задачу котла по выходу на оптимальный рабочий режим;
- если группы отопительных радиаторов находятся на разных уровнях (этажах) здания, то более эффективным, хотя и менее выгодным экономически, будет установка независимых ионных котлов необходимой мощности на каждую группу.
Ионные (электродные) котлы не подходят для систем отопления вроде «теплый пол» или «теплый плинтус», поскольку температура циркулирующего в них теплоносителя не должна превышать 45°С — котел не сможет выйти на необходимую рабочую температуру.
Источник
Электродный нагрев жидких сред
24 июля 2012 в 10:00
Электродный способ нагрева применяют для нагрева проводников II рода: воды, молока, фруктовых и ягодных соков, почвы, бетона и т.д. Электродный нагрев широко распространен в электродных водонагревателях, водогрейных и паровых котлах, а также в процессах пастеризации и стерилизации жидких и влажных сред, тепловой обработки кормов.
Материал помещают между электродами и нагревают электрическим током, протекающим по материалу от одного электрода к другому. Электродный нагрев считается прямым нагревом — здесь материал служит средой, в которой электрическая энергия преобразуется в тепловую.
Электродный нагрев — наиболее простой и экономичный способ нагрева материалов, не требует специальных источников питания или нагревателей из дорогостоящих сплавов.
Электроды подводят ток к нагреваемой среде и сами током практически не нагреваются. Электроды изготавливают из недифицитных материалов, чаще всего из металлов, но и могут быть и неметаллическими (графитовыми, угольными), Во избежание электролиза для электродного нагрева используют только переменный ток.
Проводимость влажных материалов обуславливается содержанием воды, поэтому в дальнейшем электродный нагрев будем рассматривать, главным образом, к нагреву воды, но приводимые зависимости применимы и к нагреву других влажных сред.
Нагрев в электролите
В машиностроении и ремонтном производстве применяют нагрев в электролите. Металлическое изделие (деталь) помещают в электролитическую ванну (5 — 10 %-ный раствор Na2CO3 и др.) и подсоединяют к отрицательному полюсу источника постоянного тока. В результате электролиза на катоде выделяется водород, а на аноде — кислород. Слой пузырьков водорода, покрывающий деталь, представляет для тока высокое сопротивление. В нем выделяется основная доля теплоты, нагревающая деталь. На аноде , имеющем гораздо большую поверхность, плотность тока мала. При определенных условиях деталь нагревается электрическими разрядами, возникающими в водородном слое. Газовый слой одновременно служит теплоизоляцией, предотвращающей охлаждение детали электролитом.
Преимущество нагрева в электролите — значительная плотность энергии (до 1 кВт / см2), обеспечивающая высокую скорость нагрева. Однако это достигается повышенным расходом энергии.
Электрическое сопротивление проводников II рода
Проводники II рода называют электролитами. К ним относятся водные растворы кислот, щелочей, солей, а также различные жидкие и влагосодержащие материалы (молоко, влажные корма, почва).
Дистиллированная вода имеет удельное электрическое сопротивление порядка 104 ом х м и практически не проводит электрический ток, а химически чистая вода является хорошим диэлектриком. «Обычная» вода содержит в растворенном виде соли и другие химические соединения, молекулы которых диссоциируют в воде на ионы, сообщая ей ионную (электролитическую проводимость). Удельное электрическое сопротивление воды зависит от концентрации солей и приближенно может быть определено по эмпирической формуле
где p20 — удельное сопротивление воды при 200 С, Ом х м, С — суммарная концентрация солей, мг/г
Атмосферная вода содержит растворенных солей не более 50 мг/л, воды рек — 500 — 600 мг/л, подземные воды — от 100 мг/л до нескольких граммов на литр. Наиболее часто встречающиеся значения удельного электрического сопротивления p20 для воды находятся в диапазоне 10 — 30 Ом х м.
Электрическое сопротивление проводников II рода существенно зависит от температуры. С ее возрастанием увеличивается степень диссоциации молекул солей на ионы и их подвижность, вследствие чего проводимость повышается, а сопротивление снижается. Для любой температуры t до начала заметного парообразования удельная электрическая проводимость воды, Ом х м -1, определяется линейной зависимостью
yt = y20 [1 + a (t-20)],
где y20 — удельная проводимость воды при температуре 20 o C, а — температурный коэффициент проводимости, равный 0,025 — 0,035 oC-1.
В технических расчетах обычно пользуются не проводимостью, а удельным сопротивлением
pt = 1/yt = p20 / [1 + a (t-20)] (1)
и его упрощенной зависимостью p (t), принимая a = 0,025 oC-1.
Тогда удельное сопротивление воды определяют по формуле
pt = 40 p20 / (t +20)
В диапазоне температур 20 — 100 оС удельное сопротивление воды возрастает в 3 — 5 раз, во столько же раз изменяется мощность, потребляемая из сети. Это один из существенных недостатков электродного нагрева, приводящий к завышению сечения питающих проводов и усложняющий расчет установок электродного нагрева.
Удельное сопротивление воды подчиняется зависимости (1) только до наступления заметного парообразования, интенсивность которого зависит от давления и плотности тока в электродах. Пар не является проводником тока, и поэтому при парообразовании удельное сопротивление воды возрастает. В расчетах это учитывается коэффициентом b, зависящим от давления и плотности тока:
pcм = pв b = pв a e k J
где pcм — удельное сопротивление смеси вода — пар, pв — удельное сопротивление воды без заметного парообразования, a — постоянная, равная для воды 0,925, k — величина, зависящая от давления в котле (можно принять k = 1,5), J — плотность тока на электродах, А/см2.
При нормальном давлении влияние парообразования сказывается при температуре выше 75 оС. Для паровых котлов коэффициент b достигает значения 1,5.
Электродные системы и их параметры
Электродная система — совокупность электродов, определенным образом связанных между собой и питающей сетью, предназначенных для подвода тока к нагреваемой среде.
Параметрами электродных систем являются: число фаз, форма, размеры, число и материал электродов, расстояние между ним, электрическая схема соединения («звезда», «треугольник», смешанное соединение и т. п.).
При расчете электродных систем определяют их геометрические параметры, обеспечивающие выделение в нагреваемой среде заданной мощности и исключающих возможность ненормальных режимов.
Мощность трехфазной электродной системы при соединении звездой:
P = U2л / Rф = 3Uф / Rф
Мощность трехфазной электродной системы при соединении треугольником:
При заданном напряжении Uл питания мощность электродной системы P определяется сопротивлением фазы Rф, которое представляет собой сопротивление тела нагрева, заключенного между электродами, образующими фазу. Конфигурация и размеры тела зависят от формы, размеров и расстояния между электродами. Для простейшей электродной системы с плоскими электродами шириной каждого b, высотой h и расстоянием между ними:
Rф = pl / S = pl / (bh)
где, l, b, h — геометрические параметры плоскопараллельной системы.
Для сложных систем зависимость Rф от геометрических параметров не представляется выразить столь просто. В общем случае ее можно представить в виде Rф = с х ρ, где с — коэффициент, определяемый геометрическими параметрами электродной системы (его можно определить по справочникам).
Размеры электродов, обеспечивающие необходимое значение Rф, могут быть рассчитаны, если известно аналитического описание электрического поля между электродами, а также зависимость p от определяющих ее факторов (температура, давление и др.).
Геометрический коэффициент электродной системы находят как k = Rф h / ρ
Мощность любой трехфазной электродной системы можно представить в виде P = 3U2h /(ρ k)
Кроме этого, важно обеспечить надежность электродной системы, исключение порчи продукта и электрического пробоя между электродами. Эти условия выполняются ограничением напряженности поля в межэлектродном пространстве, плотности тока на электродах и правильным выбором материала электродов.
Допустимую напряженность электрического поля в межэлектродном пространстве ограничивают требованием недопущения электрического пробоя между электродами и нарушения работы установок. Допустимую напряженность Eдоп поля выбирают по электрической прочности Епр поля выбирают по электрической прочности Епр материала с учетом коэффициента запаса: Едоп = Епр / (1,5 . 2)
Величина Едоп определяет расстояние между электродами:
l = U / Едоп = U / (Jдоп ρт),
где Jдоп — допустимая плотность тока на электродах, ρт — удельное сопротивление воды при рабочей температуре.
По опыту проектирования и эксплуатации электродных водонагревателей значение Едоп принимают в пределах (125 . 250) х 102 Вт/м, минимальное значение соответствует удельному сопротивлению воды при температуре 20 оС менее 20 Ом х м, максимальное — удельному сопротивлению воды при температуре 20 оС более 100 Ом х м.
Допустимую плотность тока ограничивают из-за возможности загрязнения нагреваемой среды вредными продуктами электролиза на электродах и разложения воды на водород и кислород, которые в смеси образуют гремучий газ.
Допустимую плотность тока определяют по формуле:
где ρт — удельное сопротивление воды при конечной температуре.
Максимальная плотность тока:
где, kн = 1,1 . 1,4 — коэффициент, учитывающий неравномерность плотности тока по поверхности электрода, Iт — сила рабочего тока, стекающего с электрода при конечной температуре, S — площадь активной поверхности электрода.
Во всех случаях должно быть соблюдено условие:
Материалы для электродов должны быть электрохимически нейтральны (инертны) относительно нагреваемой среды. Недопустимо выполнять электроды из алюминия или оцинкованной стали. Лучшими материалами для электродов служат титан, нержавеющие стали, электротехнический графит, графитизированные стали. При нагреве воды для технологических нужд используют обычную (черную) углеродистую сталь. Для питья такая вода непригодна.
Регулирование мощности электродной системы возможно при изменении значений U и R. Чаще всего при регулировании мощности электродных систем прибегают к изменению рабочей высоты электродов (площади активной поверхности электродов) путем введения между электродами диэлектрических экранов или изменением геометрического коэффициент электродной системы (определяется по справочникам в зависимости от схем электродных систем).
Источник