Меню

Могут ли действующие токи параллельно соединенных ветвей электрической цепи превышать

Цепи с параллельным соединением ветвей.

Для расчета цепи с параллельным соединением ветвей применяется метод проводимостей.

Рассмотрим применение этого метода на примере расчета цепи, показанной на рис.2. Нужно определить общий ток I в неразветвленной цепи. Он равен векторной сумме токов параллельных ветвей.

При построении векторных диаграмм в случае параллельного соединения элементов в качестве исходного вектора используется вектор напряжения , так как напряжение в этом случае одно и то же для всех ветвей (см.рис.14).

Вектор тока Ī представляет собой сумму векторов тока ĪR1, который совпадает с вектором напряжения по фазе и вектора тока , отстающего от вектора напряжения на угол π⁄2. Вектор тока равен сумме векторов тока , совпадающего с вектором напряжения по фазе, и вектора , опережающего на угол π/2. Вектор тока Ī, совпадает с напряжением по фазе, а вектор тока отстает от на угол π/2. Из векторной диаграммы на рис.14 видно, что активная составляющая тока всей цепи равна арифметической сумме активных составляющих токов ветвей:

Реактивная составляющая тока цепи равна алгебраической сумме реактивных составляющих токов ветвей:

IP = IC – IL1 – IL4 (cкалярные величины).

Векторную диаграмму токов на рис.14 можно преобразовать к виду, изображенному на рис.15.

Векторную диаграмму, показанную на рис.15, обычно называют треугольником токов. Ток в цепи до разветвления равен

Для нахождения активной, реактивной и полной проводимостей можно разделить модуль каждого вектора тока на модуль вектора , в результате чего получится прямоугольный треугольник, подобный треугольнику тока, стороны которого равны проводимостям g, b, у – так называемый треугольник проводимостей (рис.16).

g – активная проводимость;

b – реактивная проводимость;

у – полная проводимость.

В общем случае, если ветвь содержит не только одно сопротивление ( R или L или C), но несколько (как ветви аб и гд на рис.2) значения проводимостей определяются следующим образом:

Считается, что емкостная проводимость bc положительна, так как ей соответствует опережающий по фазе напряжение емкостный ток, а индуктивная bL— отрицательна, так как ей соответствует индуктивный отстающий ток.

В общем случае активная проводимость разветвления в целом равна арифметической сумме активных проводимостей ветвей:

а реактивная проводимость равна алгебраической сумме реактивных проводимостей:

Условно можно принять, что угол φ>0, если ток опережает напряжение.

Следовательно, в общем виде закон Ома для параллельного соединения будет иметь вид

В схемах с параллельным соединением ветвей может преобладать емкостная или индуктивная проводимость, но возможен и частный случай, когда

Это равенство является условием резонанса токов, при таком режиме реактивные токи в ветвях могут значительно превышать общий ток I, поступающий от источника.

Векторную диаграмму токов можно изобразить на комплексной плоскости. Для цепи на рис.2 она будет иметь такой вид, как на рис.14 (см.рис.17).

Общий ток цепи равен сумме токов ветвей İ = İ1 + İ2 + İ3 + İ4

Исходя из написанного выше, можно записать выражение для общего тока:

Это соотношение есть закон Ома для параллельной цепи, записанный в комплексном виде.

Сомножитель перед — полная проводимость параллельной цепи в комплексной форме

Все комплексные величины можно записать в показательной форме. В общем случае

Ψ – угол между напряжением и вещественной осью. У нас ψ = 0, . Комплекс проводимости в показательной форме , где

Комплекс тока в показательной форме

Резонанс в электрических цепях.

Рассмотренные выше электрические цепи представляют собой последовательный и параллельный колебательные контуры соответственно. Цепь, в которой индуктивность, емкость и активное сопротивление соединены последовательно, называется последовательным колебательным контуром . Цепь, в которой индуктивность, емкость и активное сопротивление соединены параллельно, называется параллельным колебательным контуром.

В колебательных контурах при определенных условиях могут возникать особые явления, которые называют резонансными. Резонанс в последовательном колебательном контуре называют резонансом напряжений, резонанс в параллельном колебательном контуре – резонансом токов.

В цепях переменного тока резонанс наступает тогда, когда частота источника напряжения равна резонансной частоте контура (собственной частоте колебаний контура, если ). При резонансе ток и напряжение совпадают по фазе, т.е. угол φ = 0.

Резонанс напряжений.

Закон Ома для последовательной цепи, состоящей из активного, индуктивного и емкостного сопротивлений (си.рис.1), выражается формулой

где R – активное сопротивление контура;

XL и XC — индуктивное и емкостное сопротивления контура соответственно.

Угол сдвига фаз между током и напряжением

Резонанс наступает тогда, когда цепь ведет себя как чисто активная, т.е. когда ток и напряжение совпадают по фазе, угол φ = 0.

Условием возникновения резонанса в последовательном колебательном контуре является равенство реактивных сопротивлений контура .

Тогда полное сопротивление цепи будет равно его активной составляющей:

Сдвига фаз между током и напряжением не будет, угол φ = 0, cos φ = 1.

Векторная диаграмма цепи при резонансе напряжений представлена рис. 18 (а и б).

При резонансе напряжений действующие значения реактивных составляющих напряжения UL и UC равны по величине, мгновенные значения равны и противоположны по знаку, векторы и равны и противоположны по знаку.

Результирующее напряжение при резонансе равно его активной составляющей

Следовательно, мощность, развиваемая источником, является активной мощностью, она поддерживает в цепи R, L, C незатухающие колебания, несмотря на то, что в цепи есть активное сопротивление. Энергия магнитного поля при резонансе полностью переходит в энергию электрического поля и наоборот:

Частота, при которой в контуре наступает резонанс, называется резонансной.

Значение резонансной частоты можно определить из условия резонанса XL=XC.

то резонансная частота контура

Резонанс напряжений можно получить изменяя в цепи индуктивность, емкость или частоту напряжения источника питания контура, всего, если хотят настроить контур в резонанс, используют конденсатор переменной емкости. С этого конденсатора снимают выходное напряжение.

Если XL=XC>=R, напряжение на индуктивности UL и емкости UC могут достигать значительной величины и во много раз превышать общее напряжение U, приложенное к цепи. Ток в цепи I также значительно возрастает: . Для исключения перегрузки источника питания в схему иногда вводят ограничивающее сопротивление Rорг . Поскольку резонанс сопровождается значительными перенапряжениями и сверхтоками, в мощных установках он является аварийным. Свойства колебательного контура характеризуются рядом величин:

а) Характеристическое сопротивление контура (или волновое)

Эта величина имеет размерность сопротивления (величину ρ можно получить из уравнения (х) ).

б) Добротность контура

Добротность контура служит характеристикой реального контура, когда .

При резонансе добротность контура равна отношению напряжения на емкости или индуктивности к напряжению на активном сопротивлении.

Покажем это: , но

Добротность радиотехнических контуров обычно составляет 50-200.

в) Затухание контура

г) Резонансные кривые – это графическое изображение зависимости напряжений на емкости, индуктивности и активном сопротивлении, а также тока от частоты (см.рис.19).

Чаще всего резонансные кривые стоят в зависимости от относительной частоты

где А – значение напряжения или тока;

w, f — текущее значение угловой частоты и частоты соответственно;

— значения угловой частоты и частоты при резонансе.

Построенные таким образом зависимости обладают наибольшей общностью.

Вид резонансных кривых, построенных в функции относительной частоты, целиком определяется добротностью контура Q. На рис.20 показано семейство резонансных кривых для различных значений добротности контура.

Читайте также:  Прерыватель питания ппбр 2 220в постоянного тока

Из рис.20 видно, что с увеличением добротности контура резонансная кривая становится острее.

д) Полоса пропускания контура (или ширина резонансной кривой) – это полоса частот вблизи резонанса, на границах которой выходная величина А (напряжение, ток) составляет от резонансного (максимального) значения (см.рис.21).

Резонанс токов.

Как указывалось выше, резонанс токов наблюдается в параллельных колебательных контурах, содержащих элементы L, C и R (см.рис.22). Параллельные контуры могут быть и другого вида.

Примечание: Rогр включают для исключения перегрузки источника питания.

Закон Ома для параллельного соединения активного сопротивления, емкости, индуктивности в общем случае выражается формулой:

где g — активная проводимость;

bL и bc — реактивные проводимости, индуктивная и емкостная соответственно.

Угол сдвига фаз между током в неразветвленной части цепи I и приложенным напряжением равен

Если bL = bc , цепь будет вести себя так, будто она содержит только активное сопротивление. В этом случае в неразветвленной части цепи ток I будет совпадать по фазе с приложенным к контуру напряжением, φ = 0, cosφ = 1.Такое состояние цепи называется резонансом токов.

Резонансная частота контура определяется следующим образом

Т.к. при резонансе

При малых значениях активных сопротивлений R1 и R2 выражение для fрез для последовательного колебательного контура

Векторная диаграмма цепи для случая, когда показана на рис.23 (значения величин взяты произвольно).

Общий реактивный ток, равный разности реактивных токов ветвей, при резонансе токов равен 0. Общий ток цепи имеет только активную составляющую, таким образом, его величина в момент резонанса имеет наименьшее значение. В идеальном случае, если R1 = R2 = 0, резонанс токов эквивалентен размыканию цепи.

Рассмотрим, какое значение имеют токи в ветвях и индуктивностью и емкостью при резонансе, если активное сопротивление ветвей контура R1 и R2 малы, по сравнению с реактивными сопротивлениями. Ток Ī1 отстает, а ток Ī2 опережает напряжение и ток Ī на угол, близкий к π⁄2 (см.рис.24).

В этом случае токи Ī1 и Ī2 между собой сдвинуты по фазе на угол, близкий к π, а амплитуды их будут практически равны, т.к. ХL = Хc, и во много раз больше амплитуды тока в неразветвленной ветви. Поэтому резонанс в параллельных контурах называют резонансом токов.

Поскольку токи ветвей сдвинуты по фазе на угол ≈ π при малых R1 и R2 и равны по величине, можно считать, что при резонансе они образуют как бы один контурный ток Ir, замыкающийся в колебательном контуре. Зависимость тока Iк от частоты ƒ показана на рис.25 (резонансная кривая).

Свойства параллельного колебательного контура характеризуются теми же величинами, что и последовательный колебательный контур.

Добротность Q = ρ ⁄ R для параллельного контура равна отношению тока в индуктивности Il или емкости Iс к току в неразветвленной части цепи при резонансе

Резонансные кривые для параллельного колебательного контура показаны на рис.26. (R≈0).

Резонанс токов в отличие от резонанса напряжений не является опасным для электрических установок, поскольку в реальных условиях реактивные проводимости редко бывают высокими.

Явления резонанса напряжений и токов широко используются в технике связи, автоматике и телемеханике, для улучшения cosφ в промышленных установках.

Путем настройки колебательного контура в резонанс с частотой передаваемого сигнала можно выделить полезный сигнал.

Источник

Параллельное и последовательное соединение проводников в электрической цепи

При монтаже электрических цепей в электротехнике применяют последовательное и параллельное соединение проводников. От выбранного способа соединения источников и потребителей в значительной мере зависят рабочие параметры подключенного оборудования. Поэтому особенности обоих методов построения схемы обязательно должны учитываться при проектировании электроцепей.

Параллельное и последовательное подключение проводов в электроцепи: обложка

Что такое параллельное соединение проводников

При данном способе в составе схемы в крайних точках соединяются начала и концы всех нагрузок, подключенных к источнику электротока. Сами же нагрузки размещаются параллельно по отношению друг к другу. Количество подключенных по такой схеме компонентов не ограничивается. Схема используется во многих сферах, позволяя решать разные задачи компоновки сетей. Например, часто задействуют параллельное соединение аккумуляторов.

Включение параллельной цепи

При контрольном измерении значения вольтажа электроприборов вольтметр будет показывать одинаковые величины. Это означает, что электронапряжение на каждой нагрузке будет равняться общей величине вольтажа, действующего в электрической цепи.

Схема и формулы параллельного соединения приборов

Особенностью схемы параллельного соединения можно назвать разветвление цепи. В месте разветвления происходит деление заряда с направлением его частей по отдельной линии к соответствующему проводнику. Поэтому общая величина тока будет равна суммарному значению токов на каждой из включенных нагрузок.

Совокупное электрическое сопротивление всей электроцепи имеет меньшее абсолютное значение, по сравнению с каждым из приборов.

Что такое последовательное соединение проводников

Суть этого способа заключается в том, что компоненты цепи подключаются друг к другу поочередно. Первый проводник одним проводом подключается к источнику питания. Второй его провод соединяется со вторым проводником, от которого идет конец на третий проводник и т.д., пока цепь не будет замкнута. Классическим примером последовательной электроцепи можно назвать подключение лампочек в гирлянде.

Выключенное последовательное соединение

Ток проходит по цепи приборов, состоящей из резисторов, ламп или других нагрузок, протекая через каждый включенный в электроцепь прибор. В собранной таким способом цепи отсутствует эффект деления и накопления заряда на разных ее участках. Соответственно, физическая величина ампеража будет на всех участках одинаковой.

Схема последовательного соединения

Совокупное электросопротивление всех последовательно соединенных нагрузок, приборов и устройств любого типа равняется сумме их индивидуальных сопротивлений. Таким образом, его значение прямо зависит от количества подключенных приборов и их параметров.

Аналогично рассчитывается и совокупный вольтаж. Он равняется сумме напряжений, действующих на каждом отдельном электроприборе.

Разница между последовательным и параллельным соединением, преимущества и недостатки

Принципиальные отличия между последовательным и параллельным соединение проводников по ключевым электротехническим параметрам приведены в таблице:

Параметр/тип соединения Последовательное Параллельное
Электросопротивление Равняется сумме электросопротивлений всех электропотребителей. Меньше значения электросопротивления каждого отдельного из подключенных электроприборов.
Напряжение Равняется совокупному вольтажу всех электропотребителей. Одинаковая величина на всех участках электроцепи.
Сила тока Одинаковая величина на всех участках электроцепи. Равняется совокупному значению токов на каждом из приборов.

Сравнение свечения ламп при разном соединении

Плюсы и минусы последовательного соединения

Основными преимуществам электроцепей из последовательно соединенных приборов являются их следующие особенности:

  • простота проектирования и построения схемы;
  • низкая стоимость комплектации;
  • возможность подключения приборов, рассчитанных на меньшее рабочее напряжение, по сравнению с номинальным напряжением сети;
  • выполнение функции регулирования тока – обеспечивает равномерные нагрузки на все приборы.

Аккумуляторы соединенные последовательно

Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.

Лампочки соединенные в цепь. Одна перегорела

Кроме того, минусом является снижение напряжения при увеличении количества подключенных потребителей. Примером может служить последовательное соединение нескольких ламп. Чем больше осветительных приборов подключено таким способом к источнику электропитания, тем менее яркий свет они будут давать.

Плюсы и минусы параллельного соединения

При использовании параллельного соединения проводников обеспечиваются такой набор преимуществ:

  • стабильность напряжения на электроприборах, вне зависимости от их числа;
  • возможность включения или отключения отдельных участков в нужный момент без нарушения работы всей электроцепи;
  • надежность – при выходе одного или нескольких компонентов из строя сама электроцепь продолжает сохранять работоспособность.
Читайте также:  Каким током вариться нержавейка

Аккумуляторы подключенные параллельно

Недостатком является более сложный расчет и сложная схема, использование которой повышает стоимость комплектации электросети.

Закон Ома для участка цепи

Одним из ключевых электротехнических законов можно назвать закон Ома для участка цепи. Именно этим законом объясняются отличия, которые существуют для параллельного и последовательного соединения проводников.

Формулируется он таким образом:

Записывается он следующей формулой:

I = U/R, где

I – сила тока, (А);

U – вольтаж, (В);

R – электросопротивление, (Ом).

Закон Ома. Человечки толкают, сопротивление сжимает

Смешанное соединение проводников в электрической цепи

На практике сборку электроцепей, как правило, проводят таким метод, который предусматривает смешанное соединение проводников. Это комбинированное решение, которое сочетает оба способа. Обычно для монтажа основной сети используют параллель, а отдельные потребители при необходимости объединяют в последовательную сеть.

Смешанное соединение, резисторы и формулы расчета

При расчете и сборке смешанных соединений сопротивлений обязательно должны учитываться особенности, преимущества и недостатки обоих методов подключения. В ходе проектирования, схему целесообразно разбить на отдельные части и выполнить расчет в по физическим законам, которые справедливы для последовательного и параллельного соединения. После этого, составные части объединяют в единую схему.

Как соединить вольтметр и амперметр в цепь

К числу основных электротехнических параметров относятся сила тока и вольтаж. Для контроля этих величин используют приборы – амперметры и вольтметры. Требования по подключению этих приборов в цепь определяются, исходя из законов, которые действуют для последовательного и параллельного соединения.

Схема подключенного вольтметра и амперметра

Для измерения величины тока производится включение амперметра в цепь строго последовательно с рабочей нагрузкой. Важно, чтобы сопротивление самого прибора было минимальным, чтобы не допустить его влияние на работу электрооборудования. Если амперметр подключить параллельно, это приведет к выходу амперметра из строя.

Для измерения напряжения вольтметр в цепь подключается строго параллельно источнику или приемнику тока. Сам измерительный прибор должен иметь довольно высокое собственное сопротивление. Это требуется, чтобы при измерении можно было пренебречь величиной тока, который отбирается через вольтметр.

Применение параллельного и последовательного соединения в электротехнике

Параллельное соединение активно применяется для монтажа проводки и цепей в различных видах электрического оборудования и приборов. Оно дает возможность подключить электрические устройства к электросети независимо друг от друга.

Подключенные электроприборы и лампочки в квартире по разной схеме подключения

Последовательное соединение используют, когда нужно обеспечить включение и отключение определенных приборов. Именно по этой схеме подсоединяются выключатели и тумблеры. Также схема хорошо подходит в тех случаях, когда необходимо сформировать электроцепь из потребителей с малым значением номинального напряжения.

Простая схема подключения с тумблером

При параллельном соединении конденсаторов совокупная емкость равняется сумме емкостей каждого полупроводника. В случае применения последовательного соединения конденсаторов, результирующая емкость уменьшается вдвое. Это свойство также используется при формировании электроцепей.

Последовательное соединение проводников: видео

Параллельное соединение проводников: видео

Способы соединения резисторов, решение задачи смешанного соединения проводников: видео

Источник

Электрической цепи синусоидального тока. 1. Исследовать электрическое состояние линейной разветвленной цепи синусоидального тока при различных параметрах цепи

date image2015-06-05
views image3009

facebook icon vkontakte icon twitter icon odnoklasniki icon

1. Исследовать электрическое состояние линейной разветвленной цепи синусоидального тока при различных параметрах цепи.

2. Экспериментально проверить условие, при котором наблюдается резонанс токов. Определить добротность цепи.

3. Вычислить коэффициент мощности. При различных параметрах цепи определить активную, полную и реактивную мощности.

4. Построить по опытным данным векторные диаграммы напряжения и токов при различных режимах цепи: до резонанса, при резонансе и после резонанса.

Основные теоретические положения

Если к зажимам электрической цепи (рис.1), состоящей из параллельно соединенных катушки индуктивности (с активным сопротивлением Rк и индуктивностью L) и батареи конденсаторов (емкостью С), приложено напряжение, меняющееся во времени по синусоидальному закону u (t) = Um sin wt , то токи в параллельных ветвях и неразветвленной части цепи также будут синусоидальными:

iк (t) = sin (wt — jк) = I sin (wt — jк) ;

iс (t) = sin (wt + jc) = Imc sin (wt + jc) ;

i (t) = i к(t) + i с(t) ,

где Xс = — сопротивление батареи конденсаторов;

Xк = wLк — индуктивное сопротивление катушки;

Zк = — полное сопротивление катушки индуктивности;

; ; w = 2pf ;

f – частота синусоидального тока.

По закону Ома в комплексной форме ток в катушке равен:

где Yк = gк – j bк — комплекс полной проводимости катушки;

— активная проводимость катушки;

— индуктивная проводимость катушки;

gк — активная составляющая тока катушки, совпадающая по фазе с напряжением ;

– j bк — реактивная составляющая тока катушки, отстающая по фазе от напряжения на p /2.

Ток в ветви с конденсатором равен: = = jwС = jbc .

Ток в неразветвленной части цепи определяется формулой

где Y = gк – j (bк – bc) = ye -j j = y cos j + jy sin j — комплекс полной проводимости всей цепи (рис.1);

j = arctg — угол между напряжением U, приложенным ко всей цепи, и током в неразветвленной части цепи I;

y = — модуль полной проводимости цепи;

Векторная диаграмма токов (рис.2) строится на основании уравнения, составленного по первому закону Кирхгофа. Начальную фазу напряжения принимают равной нулю, то есть = U, вектор напряжения совмещается с осью +I на комплексной плоскости.

На рис.2 приведена векторная диаграмма для случая, когда bc > bк (после резонанса) и напряжение отстает по фазе от тока на угол j Iкр).

Резонансом тока называют явление в параллельной цепи с емкостными и индуктивными приемниками, когда общий ток в неразветвленной части цепи и напряжение на входе цепи совпадают по фазе. Резонанс токов характеризуется равенством реактивных токов в индуктивном и емкостном приемниках. Ток в неразветвленной части цепи минимальный, совпадает по фазе с напряжением и определяется активными составляющими токов емкостного и индуктивного приемников. Для цепи, представленной на рис.1, резонансное состояние характеризуется соотношениями:

Векторная диаграмма для резонансного режима представлена на рис.3.

Ток в неразветвленной части цепи определяется выражением

I = y U = U .

Поскольку при резонансе ток в неразветвленной части цепи чисто активный, то условием резонанса является равенство реактивных проводимостей приемников:

Это условие называется условием резонанса токов. Резонансное состояние можно получить, изменяя параметры цепи С, Lк , Rк или частоту напряжения сети w.

Резонансная частота f = w / 2p определяется из условия резонанса

Видно, что резонанс возможен лишь при условии >Rк . При резонансе ток в цепи I минимален : I = gU.

Реактивные токи в приемниках могут оказаться больше активного тока в неразветвленной части цепи. Превышение реактивных токов приемников при резонансе по сравнению с активным током в неразветвленной части цепи характеризуют добротностью цепи q.

Мгновенная мощность в цепи есть произведение мгновенных значений тока и напряжения р(t) = u(t) i(t) .

Активная мощность – среднее за период значение мгновенной мощности, то есть активная мощность характеризует среднюю мощность преобразования энергии в цепи в другие виды энергии:

P = UI cos j .

При параллельном соединении

P = UIa = U 2 g ,

где U и I – соответственно действующие значения напряжения и тока в цепи;

j — угол сдвига по фазе между током и напряжением в цепи, зависит от характера нагрузки; g — активная проводимость цепи.

Полная мощность цепи – мощность, подводимая к зажимам цепи и характеризующая амплитуду колебаний мощности в цепи. Определяют полную мощность произведением действующих значений тока и напряжения

Реактивная мощность цепи – мощность, периодически запасаемая в реактивных элементах и отдаваемая ими обратно генератору, равная:

Читайте также:  После прижигания током идет током

Q = UI sin j .

Комплексная форма полной мощности

= Scos j + jS sin j = P + jQ

дает возможность построить векторную диаграмму мощностей – треугольник мощностей (рис.4). Из векторной диаграммы мощностей находим полную мощность: S =

При резонансе реактивная мощность цепи Q = 0. Реактивные мощности на участках цепи с Lк и C характеризуют взаимное преобразование энергии электрического и магнитного полей индуктивности и емкости. Активная мощность P = S.

Резонанс токов используют в установках для повышения коэффициента мощности, подключая параллельно приемнику с сосредоточенными параметрами R, L конденсаторную батарею емкостью С:

C = Ic / 2pfU = Iк sin jк / 2pfU ,

которая обеспечивает полную компенсацию сдвига фаз между напряжением U и током I, при этом коэффициент мощности cos j = 1 и источник электрической энергии полностью разгружается от реактивного тока (S = P). Обычно коэффициент мощности установок доводят до 0,9…0,95. Еще большее повышение cos j требует больших затрат на установку батарей конденсаторов, которые экономически не оправдываются. В этом случае емкость батареи конденсаторов определяется формулой

C = (P / 2pfU 2 )(tg jн — tg j) ,

где P — активная мощность приемника;

jн — угол сдвига по фазе приемника;

j — требуемый угол сдвига по фазе.

Повышение коэффициента мощности установок снижает ток в линии электропередач, потери в линии DPл = I 2 Rл .

Экспериментальное исследование линейной разветвленной электрической цепи синусоидального тока выполняют на установке, схема которой приведена на рис.5. Цепь состоит из параллельно соединенных индуктивной катушки и конденсаторной батареи переменной емкости. Питание установки осуществляется от сети переменного тока 0 — А через двухполюсный выключатель В и регулирующий автотрансформатор ЛАТР, которым поддерживают на зажимах приемников заданную величину напряжения U, измеряемую вольтметром V. Ваттметр W измеряет активную мощность в цепи, а амперметры А, А1, А2 – токи I, I1 , I2 соответственно в неразветвленной части цепи и в отдельных ветвях.

Порядок выполнения работы

1. Ознакомиться с приборами и оборудованием экспериментальной установки и записать технические характеристики в отчет.

2. Собрать схему, показанную на рис.5.

3. Поставить ручки регулирующего автотрансформатора ЛАТР в нулевое положение, выключить все конденсаторы в батарее и после проверки схемы руководителем замкнуть двухполюсный выключатель В.

4. Установить поворотом ручки регулирующего автотрансформатора заданную преподавателем величину напряжения U (80…100 В) на входе электрической цепи и на протяжении всего опыта поддерживать ее неизменной.

5. Изменяя емкость батареи конденсаторов, добиться резонанса в цепи: ток в неразветвленной части цепи достигнет минимального значения, активная мощность P = UI. Зафиксировать резонансную емкость.

6. Произвести опыты, изменяя емкость от 0 до Cp (3…5 опытов) и в таких же пределах выше Cp. Вблизи резонансной емкости измерения делать чаще. Данные измерений занести в табл. 1.

7. Результаты вычислений занести в табл. 1, 2. Учитывая, что параметры катушки индуктивности не изменялись, их достаточно вычислить один раз, например при резонансной емкости. При резонансе определить добротность цепи q.

8. По данным табл. 1 построить кривые Ic(C), Iк(C), I(C), cos j =f (C), j = f (C).

9. По опытным данным в масштабе построить три векторные диаграммы: до резонанса, в момент резонанса, после резонанса.

Указание: При построении векторной диаграммы нужно вспомнить, что Iк=IL , только тогда, когда Rк » 0.

В нашем опыте Rк ¹ 0, поэтому , где Iка и Iкр – активная и реактивная составляющие тока катушки; Iка = gкU; Iкр = bкU или (см. рис.2): Iка =Iк cos jк ; Iкр = Iк sin jк = ; cos jк = .

Так как активная мощность выделяется только на катушке, то показание ваттметра P и есть мощность катушки Pк.

Отсюда P = Pк = UI cos j = UIк cos jк = UIка = gкU 2 = RкI к 2 .

Построение векторной диаграммы токов и напряжений можно проводить так (рис.2):

1. Совместить вектор с действительной осью;

2. Под углом jк отложить вектор = Iк e -j j к ;

3. От вектора провести вектор , опережающий напряжение на угол p/2;

4. Замыкающий вектор = + .

При изменении емкости параметры катушки не изменяются, поэтому не изменяется ни величина, ни направление вектора , изменяется лишь по величине вектор .

Для исследуемой катушки известно: U, Iк , Pк= P.

По этим данным рассчитываются параметры катушки:

Для конденсатора известно U, Ic . Отсюда Xc = U/ Ic , bc = Ic / U.

№ Данные наблюдений Результаты вычислений
С, мкФ U, В I, А Iс , А Iк , А P, Вт S, ВА Q , ВАр cosj y, См — 1 qк , Ом — 1 bк , Ом — 1 bc , Ом — 1 xc , Ом q
1¸9
C = Cp мкФ Результаты вычислений
Zк Rк Xк cos jк Lк gк

Вопросы для самоконтроля

1. Как определить полное сопротивление ветви электрической цепи синусоидального тока?

2. Какие величины определяют знак реактивного сопротивления ветви той же электрической цепи?

3. Как рассчитать ток в неразветвленной части электрической цепи синусоидального тока?

4. В какой электрической цепи и при каких условиях может возникнуть резонанс токов?

5. Чему равен коэффициент мощности цепи при резонансе токов?

6. Могут ли действующие токи в ветвях электрической цепи превышать действующий ток в неразветвленной части этой же цепи?

7. Какими величинами нужно располагать для расчета емкости конденсаторной батареи, обеспечивающей повышение коэффициента мощности установки до данного значения? До какого значения целесообразно повышать коэффициент мощности установок?

8. Чему равна реактивная мощность в цепи при резонансе токов?

1. Электротехника / Под ред. В. Г. Герасимова. – М.: Высшая школа, 1985. – С. 73-78, 81-88.

2. Касаткин А. С., Немцов М. В. Электротехника. – М.: Энергоатомиздат, 1983. – С. 63-98.

3. Иванов А. А. Электротехника: Лабораторные работы.- Киев: Вища школа, 1976. – С. 60-67.

Источник



Могут ли действующие токи параллельно соединенных ветвей электрической цепи превышать

Вопрос по физике:

Могут ли действующие токи параллельно соединенных ветвей электрической цепи превышать действующий ток в её неразветвленной части?ПОМОГИТЕЕЕ ПОЖАЛУЙСТААА!

Ответы и объяснения 1

Не могут. Это было бы слишком здорово. Разветвляй себе полватта от действующего тока в полампера — и греби по, к примеру, десять ватт с каждой параллели! Чем не вечный двигатель.

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Источник