Меню

Методы применяется при расчете линейных электрических цепей постоянного тока

Методы расчета линейных электрических цепей

Расчет цепей с использованием законов Кирхгофа

Законы Кирхгофа используют для нахождения токов в ветвях схемы. Обозначим число всех ветвей схемы через b, число ветвей, содержащих источники тока, через bИT, число узлов — у. В каждой ветви схемы течет свой ток. Так как токи в ветвях с источниками тока известны, то число неизвестных токов равняется (bbИT). Перед тем как составлять уравнения, необходимо произвольно выбрать: а) положительные направления токов в ветвях и обозначить их на схеме; б) положительные направления обхода контуров для составления уравнений по второму закону Кирхгофа.

Чтобы получить линейно независимые уравнения, по первому закону Кирхгофа составляют число уравнений, равное числу узлов без единицы, т.е. у — 1. По второму закону Кирхгофа составляют число уравнений n , равное

При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляются уравнения, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону Кирхгофа, т.е. число уравнений по второму закону Кирхгофа равно числу независимых контуров.

Пример 1. Найти токи в ветвях схемы рис. 1.13, в которой Е1 = 80 В, Е2 = 64В, R1= 6 Ом, R2 = 4 Ом, R3 = 3 Ом, R4= 10 Ом.

Рис. 1.13

Решение. Произвольно выбираем положительные направления тока в ветвях. В схеме рис. 1.13 b=3; bИТ=0; y=2.

Следовательно, по первому закону Кирхгофа можно составить только одно уравнение y-1=1:

По второму закону Кирхгофа составим два уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

Знак плюс перед I1R1 взят потому, что направление тока совпадает с направлением обхода контура, а знак минус перед I2R2 потому, что направление I2 встречно обходу контура.

Совместное решение трех уравнений дает

I1 = 14 A, I2 = -15 A, I3 = -1 A.

В рассматриваемом примере отрицательными оказались токи I2 и I3, это следует понимать так, что в действительности токи I2 и I3 направлены в обратную сторону.

Метод контурных токов

При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Таким образом, метод контурных токов можно определить как метод расчета, в котором в качестве неизвестных принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, составляемых для схемы по второму закону Кирхгофа. Преимуществом этого метода, по сравнению с методом на основе законов Кирхгофа, является меньшая вычислительная работа, так как в нем меньше уравнений.

Вывод основных расчетных уравнений проведем применительно к схеме рис. 1.14, содержащей два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток I11 , а в правой (также по часовой) — контурный ток I22. Для каждого из контуров составим уравнения по второму закону Кирхгофа. При этом учтем, что в смежной ветви (с сопротивлением Rs) течет сверху вниз ток I11I22. Направления обхода контуров примем также по часовой стрелке.

Для первого контура

Для второго контура

Рис. 1.14

В уравнении (1.24) множитель при токе I11, являющийся суммой сопротивлений первого контура, обозначим через R11, множитель при токе I22 (сопротивление смежной ветви, взятое со знаком минус), – через R12.

В уравнении (1.25) множитель при токе I22, являющийся суммой сопротивлений второго контура, обозначим через R22, множитель при токе I11 (сопротивление смежной ветви, взятое со знаком минус), – через R21.

Перепишем эти уравнения следующим образом:

где R11 и R22 — полное или собственное сопротивление первого и второго контуров соответственно; E11 и Е22 — контурные ЭДС первого и второго контуров, равные алгебраической сумме ЭДС этих контуров; R12 = R21 -сопротивление смежной ветви между первым и вторым контуром, взятое со знаком минус, так как контурные токи по ветви протекают встречно.

Если в схеме больше контуров, например три, то система уравнений в общем виде выглядит следующим образом:

В результате решения системы уравнений (1.26) какой-либо один или несколько контурных токов могут оказаться отрицательными.

В ветвях, не являющихся смежными между соседними контурами, найденный контурный ток является истинным током ветви. В смежных ветвях через контурные токи определяются токи ветвей.

Если в электрической цепи имеется n независимых контуров, то число уравнений тоже равно n.

Общее решение системы n-уравнений относительно тока Ikk таково:

где D — определитель системы.

Алгебраическое дополнение ∆km, получено из определителя ∆ путем вычеркивания k-го столбца и m-й строки и умножения полученного определителя на (-1) k + m .

Составлению уравнений по методу контурных токов для схем с источниками тока присущи некоторые особенности. В этом случае полагаем, что каждая ветвь с источником тока входит в контур, замыкающийся через ветви с источниками ЭДС и сопротивлениями, и что токи в этих контурах известны и равны токам соответствующих источников тока. Если для схемы рис. 1.15 принять, что контурный ток I11 = J течет согласно направлению часовой стрелки по первой и второй ветвям, а контурный ток I22 = I3 замыкается также по часовой стрелке по второй и третьей ветвям, то, согласно методу контурных токов, получим только одно уравнение с неизвестным током I22:

Отсюда и ток второй ветви I2=I11I22=JI22 .

Источник

ElectronicsBlog

Обучающие статьи по электронике

Электротехника Часть 5 Методы расчёта электрических цепей

Всем доброго времени суток. В прошлой статье я рассматривал типы соединений приемников энергии в электрических цепях, а так же законы Кирхгофа, которые определяют основные соотношения токов и напряжений в этих цепях. Но кроме знания основных законов электротехники необходимо уметь рассчитывать неизвестные параметры электрических цепей по заданным известным параметрам. Так, например, по известным напряжениям, ЭДС и сопротивлениям необходимо знать какую мощность будет потреблять тот или иной приемник энергии, а так же вся цепь в целом. Этим мы и займёмся в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Расчёт электрических цепей с помощью законов Кирхгофа

Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.

Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением

В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже

Схема для расчёта по законам Кирхгофа

Пример электрической цепи для расчёта по законам Ома и Кирхгофа.

В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.

    Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид

Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3 и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид

Таким образом, получившаяся система уравнений будет иметь следующий вид

Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.

В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.

Метод контурных токов

Рассмотренный выше метод расчета электрических цепей при анализе больших и разветвленных цепей приводит к неоправданно трудоемким расчетам, поэтому редко применяется. Более широко используется метод контурных токов, позволяющий значительно сократить количество уравнений. При этом вместо токов в ветвях электрической цепи определяются так называемые контурные токи при помощи второго закона Кирхгофа. Таким образом, количество требуемых уравнений будет равняться числу независимых контуров. В качестве примера рассчитаем цепь изображённую на рисунке ниже

Читайте также:  Депо электровозов переменного тока

Метод контурных токов

Расчет цепи методом контурных токов.

Если бы мы вели расчёт цепи по методу законов Ома и Кирхгофа, то необходимо было бы решить систему из пяти уравнений. Для расчёта по методу контурных токов необходимо всего три уравнения.

В начале расчёта выделяют независимые контуры, в нашем случае это: E1R1R2E2, E2R2R4E3R3 и E3R4R5. Затем контурам присваивают произвольно направленный контурный ток, который имеет одинаковое направление для всех участков выбранного контура, в нашем случае для первого контура контурный ток будет Ia, для второго – Ib, для третьего – Ic. Как видно из рисунка некоторые контурные токи соответствуют токам в ветвях

Остальные же токи можно найти как разность двух контурных токов

В результате выбора контурных токов можно составить систему уравнений по второму закону Кирхгофа

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы получим Ia = I1 = 4,286 А, Ib = I3 = 3,571 А, Ic = I5 = -0,714 А, I2 = -0,715 А, I4 = 4,285 А. Так же как и в предыдущем случае если токи получаются отрицательными, значит действительное направление противоположно принятому. Таким образом, токи I2 и I5 имеют направление противоположное изображённым на рисунке.

Метод узловых напряжений

Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает

где q – количество узлов в электрической цепи.

Принцип расчёта электрической цепи заключается в следующем:

  1. Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
  2. Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
  3. После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.

В качестве примера возьмём предыдущую цепь и составим систему уравнений

Метод узловых потенциалов

Схема для решения уравнений методом узловых потенциалов.

В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа

Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома

В результате получившаяся система будет иметь следующий вид

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны

Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник

Методы расчета линейных электрических цепей

Закон Ома – падение напряжения на элементе равно произведению величины сопротивления этого элемента на величину тока, протекающего через него.

Первый закон Кирхгофа – сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла.

Второй закон Кирхгофа – в замкнутом контуре алгебраическая сумма напряжений источников электрической энергии равна алгебраической сумме падений напряжений на элементах контура. При обходе контура в произвольно выбранном направлении значения напряжений берутся с плюсом, если направление обхода контура и направления напряжений совпадают и берутся с минусом, если этого совпадения нет.

Расчет методом эквивалентного преобразования

Этот метод применяется для не очень сложных пассивных электрических цепей, такие цепи встречаются довольно часто, и поэтому этот метод находит широкое применение. Основная идея метода состоит в том, что электрическая цепь последовательно преобразуется («сворачивается») до одного эквивалентного элемента, как это показано на рис. 1.13, и определяется входной ток. Затем осуществляется постепенное возвращение к исходной схеме («разворачивание») с последовательным определением токов и напряжений.

Последовательность расчёта:

1. Расставляются условно–положительные направления токов и напряжений.

2. Поэтапно эквивалентно преобразуются участки цепи. При этом на каждом этапе во вновь полученной после преобразования схеме расставляются токи и напряжения в соответствии с п. 1.

3. В результате эквивалентного преобразования определяется величина эквивалентного сопротивления цепи.

4. Определяется входной ток цепи с помощью закона Ома.

5. Поэтапно возвращаясь к исходной схеме, последовательно находятся все токи и напряжения.

Рассмотрим этот метод на примере (рис. 1.15). В исходной схеме расставляем условно–положительные направления токов в ветвях и напряжений на элементах. Нетрудно согласиться, что под действием источника E с указанной полярностью направление токов и напряжений такое, какое показано стрелками. Для удобства дальнейшего пояснения метода, обозначим на схеме узлы а и б. При обычном расчете это можно не делать.

Далее осуществляем последовательно эквивалентное преобразование схемы. Вначале объединяем параллельно соединенные элементы, и находим (рис. 1.15, б):

Затем, объединяя все последовательно соединенные элементы, завершаем эквивалентное преобразование схемы (рис. 1.15, в):

В последней схеме (рис. 1.15, в) находим ток I1:

Теперь возвращаемся к предыдущей схеме (рис. 1.15, б). Видим, что найдCенный ток I1 протекает через R1, R2,3, R4 и создает на них падение напряжения. Найдем эти напряжения:

.Возвращаясь к исходной схеме (рис. 1.15, а), видим, что найденное напряжениеUаб прикладывается к элементам R2 и R3.

Значит, можем записать, чтоU2 = U3 = Uа,б

Токи в этих элементах находят из совершенно очевидных соотношений:

Итак, схема рассчитана.

расчет с помощью законов кирхгофа

Этот метод наиболее универсален и применяется для расчета любых цепей. при расчете этим методом первоначально определяются токи в ветвях, а затем напряжения на всех элементах. токи находятся из уравнений, полученных с помощью законов кирхгофа. так как в каждой ветви цепи протекает свой ток, то число исходных уравнений должно равняться числу ветвей цепи. число ветвей принято обозначать через n. часть этих уравнений записываются по первому закону кирхгофа, а часть – по второму закону кирхгофа. все полученные уравнения должны быть независимыми. это значит, чтобы не было таких уравнений, которые могут быть получены путем перестановок членов в уже имеющемся уравнении или путем арифметических действий между исходными уравнениями. при составлении уравнений используются понятия независимых и зависимых узлов и контуров. рассмотрим эти понятия.

независимым узлом называется узел, в который входит хотя бы одна ветвь, не входящая в другие узлы. если число узлов обозначим через к, то число независимых узлов равно (к–1). на схеме (рис. 1.16) из двух узлов только один независим.

независимым контуром называется контур, который отличается от других контуров хотя бы одной ветвью, не входящей в другие контура. в противном случае такой контур называется зависимым.

если число ветвей цепи равно n, то число независимых контуров равно [n – (к–1)].

в схеме (рис. 1.16) всего три контура, но только два независимых контура, а третий – зависим. выделять независимые контура можно произвольно, т. е. в качестве независимых контуров можно выбрать при первом расчете одни, а при втором расчете (повторном) – другие, которые раньше были зависимыми. результаты расчета будут одинаковыми.

если по первому закону кирхгофа составить уравнения для (к–1) независимых узлов, а по второму закону кирхгофа составить уравнения для [n – (к–1)] независимых контуров, то общее число уравнений будет равно:

(K–1) + [n – (K–1)] = n.

Это означает, что для расчёта имеется необходимое число уравнений.

Последовательность расчёта:

1. Расставляем условно – положительные направления токов и напряжений.

2. Определяем число неизвестных токов, которое равно числу ветвей (n).

3. Выбираем независимые узлы и независимые контура.

4. С помощью первого закона Кирхгофа составляем (К–1) уравнений для независимых узлов.

5. С помощью второго закона Кирхгофа составляем [n – (К–1)] уравнений для независимых контуров. При этом напряжения на элементах выражаются через токи, протекающие через них.

6. Решаем составленную систему уравнений и определяем токи в ветвях. При получении отрицательных значений для некоторых токов, необходимо их направления в схеме изменить на противоположные, которые и являются истинными.

7. Определяем падения напряжений на всех элементах схемы.

Рассмотрим последовательность расчета на примере схемы, приведенной на рис. 1.16. Учитывая направление источника E, расставляем условно–положительные направления токов и напряжений. В схеме три ветви, поэтому нам необходимо составить три уравнения. В схеме два узла, следовательно, из них только один независимый. В качестве независимого узла выберем узел 1. Для него запишем уравнение по первому закону Кирхгофа:

Читайте также:  Класс защиты от поражения электрическим током паяльника

I1 = I2 + I3.

Далее необходимо составить два уравнения по второму закону Кирхгофа. В схеме всего три контура, но независимых только два. В качестве независимых контуров выберем контур из элементов ER1R2 и контур из элементов R2R3. Обходя эти два контура по направлению движения часовой стрелки, записываем следующие два уравнения:

Решаем полученные три уравнения и определяем токи в ветвях. Затем через найденные токи по закону Ома определяем падения напряжений на всех элементах цепи.

расчет методом контурных токов

Сложные схемы характеризуются наличием значительного числа ветвей. В случае применения предыдущего метода это приводит к необходимости решать систему из значительного числа уравнений.

Метод контурных токов позволяет заметно уменьшить число исходных уравнений. При расчёте методом контурных токов используются понятия независимого контура и зависимого контура, которые нам уже известны. Кроме них в этом методе используются ещё следующие понятия:

собственный элемент контура – элемент, относящийся только к одному контуру;

общий элемент контура – элемент, относящийся к двум и более контурам цепи.

Обозначаем, как и раньше, через К число узлов, а через n число ветвей цепи. Тогда число независимых контуров цепи определяется по уже известной формуле [n – (К–1)].

Метод основывается на предположении, что в каждом независимом контуре течёт собственный контурный ток (рис. 1.17), и вначале находят контурные токи в независимых контурах. Токи в ветвях цепи определяют через контурные токи. При этом исходят из того, что в собственных элементах контура токи совпадают с контурным током данного контура, а в общих элементах ток равен алгебраической сумме контурных токов тех контуров, к которым принадлежит данный элемент.

Последовательность расчёта:

1. Определяется число ветвей (n) и число узлов (К) цепи. Находится число независимых контуров [n – (К–1)].

2. Выбирается [n – (К–1)] не зависимых контура.

3. Выбирается условно–положительное направление контурных токов в каждом из независимых контуров (обычно показывается стрелкой).

4. Для каждого из независимых контуров составляется уравнение по второму закону Кирхгофа. При этом падение напряжения на собственных элементах определяется как произведение контурного тока на величину сопротивления, а на общих элементах – как произведение алгебраической суммы всех контурных токов, протекающих через данный элемент, на величину его сопротивления. Обход контура производится, как правило, в направлении собственного контурного тока.

5. Решается система из [n – (К–1)] уравнений и находятся контурные токи.

6. Токи в ветвях схемы находятся следующим образом:

– в собственных элементах контура ток равен контурному току;

– в общих элементах контура ток равен алгебраической сумме токов, протекающих через данный элемент.

Рассмотрим в общем виде применение этого метода для расчёта схемы, приведенной на рис. 1.17.

В этой схеме три ветви и два узла, следовательно, в ней только два независимых контура. Выбираем эти контура и показываем в них направления (произвольно) контурных токов Iк1 и Iк2. Составляем два уравнения по второму закону Кирхгофа:

.

Решив эту систему уравнений, находим контурные токи Iк1 и Iк2. Затем определяем токи в ветвях:

РАСЧЕТ МЕТОДОМ НАЛОЖЕНИЯ

Метод применяется для расчета цепей, содержащих несколько (два и более) источников электрической энергии. Подчеркнем, что этот метод применим для расчета только линейных цепей. Метод основывается на том положении, что в каждой ветви цепи ток равен алгебраической сумме токов, создаваемых каждым источником. Следовательно, необходимо определить токи, создаваемые каждым источником в отдельности, а затем их просуммировать с учетом направлений.

Последовательность расчета:

1. В электрической цепи оставляют только один источник ЭДС. Вместо исключенного источника ЭДС ставится или резистор, величина которого равна величине внутреннего сопротивления источника ЭДС, или перемычка, если внутреннее сопротивление источника равно нулю.

2. Определяются токи во всех ветвях, создаваемые этим источником ЭДС.

3. Оставляется в цепи следующий источник ЭДС, а с остальными поступают аналогично тому, как сказано в п. 1.

4. Определяются токи в цепи, создаваемые вторым источником ЭДС.

5. Аналогично поступают с оставшимися источниками.

6. Истинные токи в ветвях цепи определяются как алгебраическая сумма токов в этих ветвях, созданных каждым из источников.

Рассчитаем цепь, изображенную на рис. 1.18, методом наложения. Будем считать, что внутренние сопротивления источников ЭДС равны нулю.

В начале оставляем источник E1, а источник E2 убирается и в место него ставится перемычка (рис. 1.18, б). В полученной схеме находим токи методом эквивалентного преобразования:

Затем оставляем только источник E2, а вместо E1 ставится перемычка (рис. 1.18, в). В полученной схеме определяем токи в ветвях также методом эквивалентного преобразования:

Находим действительные токи в исходной схеме (рис. 1.18, а) алгебраическим суммированием найденных токов.

Ток I1 равен разности тока I11 и тока I12:

Ток I2 равен сумме токов I21 и I22, т. к. они совпадают по направлению:

Ток I3 равен разности тока I32 и тока I31:

Источник



МЕТОДЫ РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Суть расчетов заключается, как правило, в том, чтобы по известным значениям всех сопротивлений цепи и параметров источников (ЭДС или тока) определить токи во всех ветвях и напряжения на всех элементах (сопротивлениях ) цепи.

Для расчета электрических цепей постоянного тока могут применяться различные методы. Среди них основными являются :

– метод, основанный на составлении уравнений Кирхгофа;

– метод эквивалентных преобразований;

– метод контурных токов ;

– метод узловых потенциалов;

– метод эквивалентного источника;

Метод, основанный на составлении уравнений Кирхгофа, является универсальным и может применяться как для одноконтурных, так и для многоконтурных цепей. При этом количество уравнений, составленных по второму закону Кирхгофа, должно быть равно количеству внутренних контуров схемы.

Количество уравнений, составленных по первому закону Кирхгофа, должно быть на единицу меньше количества узлов в схеме.

Например, для данной схемы

составляется 2 уравнения по 1-му закону Кирхгофа и 3 уравнения по 2-му закону Кирхгофа.

Рассмотрим остальные методы расчета электрических цепей:

Метод эквивалентных преобразований применяется для упрощения схем и расчетов электрических цепей. Под эквивалентным преобразованием понимается такая замена одной схемы другой, при которой электрические величины схемы в целом не меняются ( напряжение, ток, потребляемая мощность остаются неизменными ).

Рассмотрим некоторые виды эквивалентных преобразований схем.

а). последовательное соединение элементов

Общее сопротивление последовательно соединенных элементов равно сумме сопротивлений этих элементов.

б). параллельное соединение элементов.

Рассмотрим два параллельно соединенных элемента R1 и R2 . Напряжение на этих элементах равны, т.к. они подключены к одним и тем же узлам а и б.

Применяя закон Ома получим

Применим 1-й закон Кирхгофа к узлу ( а )

Выразим токи I1 и I2 через напряжения получим

В соответствии с законом Ома имеем I=UАБ / RЭ ; где RЭ – эквивалентное сопротивление

Учитывая это, можно записать

Введем обозначения: 1/RЭ=GЭ – эквивалентная проводимость

1/R1=G1 – проводимость 1-го элемента

1/R2=G2 – проводимость 2-го элемента.

Запишем уравнение (6) в виде

Из этого выражения следует, что эквивалентная проводимость параллельно соединенных элементов равна сумме проводимостей этих элементов.

На основе (3.13) получим эквивалентное сопротивление

в). Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование.

Соединение трех элементов цепи R1 , R2 , R3 , имеющее вид трех лучевой звезды с общей точкой ( узлом ), называется соединением “звезда”, а соединение этих же элементов, при котором они образуют стороны замкнутого треугольника – соединением “треугольник”.

соединение – звезда ( ) соединение – треугольник ( )

Преобразование треугольника сопротивлений в эквивалентную звезду проводится по следующим правилу и соотношениям:

Сопротивление луча эквивалентной звезды равно произведению сопротивлений двух примыкающих сторон треугольника, деленному на сумму всех трех сопротивлений треугольника.

(3.15)

Преобразование звезды сопротивлений в эквивалентный треугольник производится по следующим правилу и соотношениям:

Сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух примыкающих лучей звезды плюс произведение этих двух сопротивлений, деленное на сопротивление третьего луча:

(3.16)

г). Преобразование источника тока в эквивалентный источник ЭДС Если в схеме имеется один или несколько источников тока, то часто для удобства расчетов следует заменить источники тока на источники ЭДС

Пусть источник тока имеет параметры IК и GВН .

ЕЭ

Тогда параметры эквивалентного источника ЭДС можно определить из соотношений

Читайте также:  Что понимают под внутренним сопротивлением источника тока

При замене источника ЭДС эквивалентным источником тока необходимо использовать следующие соотношения

Метод контурных токов.

Этот метод применяется, как правило, при расчетах многоконтурных схем, когда число уравнений, составленных по 1-му и 2-му законам Кирхгофа, равно шести и более.

Для расчета по методу контурных токов в схеме сложной цепи определяются и нумеруются внутренние контуры. В каждом из контуров произвольно выбирается направление контурного тока, т.е. тока, замыкающегося только в данном контуре.

Затем для каждого контура составляется уравнение по 2-му закону Кирхгофа. При этом, если какое-либо сопротивление принадлежит одновременно двум смежным контурам, то напряжение на нем определяется как алгебраическая сумма напряжений, создаваемых каждым из двух контурных токов.

Если количество контуров n , то и уравнений будет n. Решая данные уравнения ( методом подстановки или определителей ), находят контурные токи. Затем, используя уравнения , записанные по 1-му закону Кирхгофа, находят токи в каждой из ветвей схемы.

Запишем контурные уравнения для данной схемы.

Для 1-го контура:

Для 2-го контура

Для 3-го контура

Производя преобразования запишем систему уравнений в виде

Решая данную систему уравнений, определяем неизвестные I1 , I2 , I3. Токи в ветвях определяются, используя уравнения

Этот метод основан на принципе наложения и применяется для схем с несколькими источниками электроэнергии. Согласно этому методу при расчете схемы, содержащей несколько источников э.д.с. , поочередно полагаются равными нулю все ЭДС , кроме одной. Производится расчет токов в схеме, создаваемой одной этой ЭДС. Расчет производится отдельно для каждой ЭДС, содержащейся в схеме. Действительные значения токов в отдельных ветвях схемы определяются как алгебраическая сумма токов, создаваемых независимым действием отдельных ЭДС.

Пример:

На рис. 3.19 исходная схема, а на рис.3.20 и рис.3.21 схемы замещается с одним источником в каждой.

Определяются токи в ветвях исходной схемы по формулам;

Метод узловых потенциалов

Метод узловых потенциалов позволяет уменьшить число совместно решаемых уравнений до У – 1, где У – число узлов схемы замещения цепи. Метод основан на применении первого закона Кирхгофа и заключается в следующем:

1. Один узел схемы цепи принимаем базисным с нулевым потенциалом. Такое допущение не изменяет значения токов в ветвях, так как – ток в каждой ветви зависит только от разностей потенциалов узлов, а не от действительных значений потенциалов;

2. Для остальных У — 1 узлов составляем уравнения по первому закону Кирхгофа, выражая токи ветвей через потенциалы узлов.

При этом в левой части уравнений коэффициент при потенциале рассматриваемого узла положителен и равен сумме проводимостей сходящихся к нему ветвей.

Коэффициенты при потенциалах узлов, соединенных ветвями с рассмат- риваемым узлом, отрицательны и равны проводимостям соответствующих ветвей. Правая часть уравнений содержит алгебраическую сумму токов ветвей с источниками токов и токов короткого замыкания ветвей с источниками ЭДС, сходящихся к рассматриваемому узлу, причем слагаемые берутся со знаком плюс (минус), если ток источника тока и ЭДС направлены к рассматриваемому узлу (от узла).

3. Решением составленной системы уравнений определяем потенциалы У-1 узлов относительно базисного, а затем токи ветвей по обобщен- ному закону Ома .

Рассмотрим применение метода на примере расчета цепи по рис. 3.22.

Для решения методом узловых потенциалов принимаем .

Система узловых уравнений: число уравнений N = Ny – NB -1,

где: Ny = 4 – число узлов,

NB = 1 – число вырожденных ветвей (ветви с 1-м источником ЭДС),

т.е. для данной цепи: N = 4-1-1=2.

Составляем уравнения по первому закону Кирхгоф для (2) и (3) узлов;

I2 – I4 – I5 – J5=0; I4 + I6 –J3 =0;

Представим токи ветвей по закону Ома через потенциалы узлов:

I2 = (φ2 − φ1) / R2 ; I4 = (φ2 +E4 − φ3) / R4

I5 = (φ2 − φ4) / R5 ; I6 = (φ3 – E6 − φ4) / R6;

где,

Подставив эти выражения в уравнения токов узлов, получим систему;

где ,

Решая систему уравнений численным методом подстановки или определи- телей находим значения потенциалов узлов, а по ним значения напряжений и токов в ветвях.

Метод Эквивалентного источника (активного двухполюсника)

Двухполюсником называется цепь, которая соединяется с внешней частью через два вывода – полюса. Различают активные и пассивные двухполюсники.

Активный двухполюсник содержит источники электрической энергии, а пас- сивный их не содержит. Условные обозначения двухполюсников прямоугольни- ком с буквой А для активного и П для пассивного (рис. 3.23.)

Для расчета цепей с двухполюсниками последние представляют схемами заме -щения. Схема замещения линейного двухполюсника определяется его вольт-амперной или внешней характеристикой V (I ). Вольт-амперная характеристика пассивного двухполюсника – пря мая. Поэтому его схема замещения представ- ляется резистивным элементом с сопротивлением:

где: U – напряжение между выводами, I-ток и rвх – входное сопротивление.

Вольт-амперную характеристику активного двухполюсника (рис. 3.23, б) можно построить по двум точкам, соответствующим режимам холостого хода, т. е. при гн = °°, U = Uх, I = 0, и короткого замыкания, т. е. при гн =0, U = 0, I =Iк. Эта характеристика и ее уравнение имеет вид:

где: гэк – эквивалентное или выходное сопротивление двухполюсника, совпа-

дают с одноименными характеристикой и уравнением источника электроэнер- гии, представляемого схемами замещения на рис. 3.23.

Итак, активный двухполюсник представляется эквивалентным источником с ЭДС – Еэк = Uх и внутренним сопротивлением – гэк = гвых (рис. 3.23, а) Пример активного двухполюсника.- гальванический элемент. При изменении тока в пределах 0 2

η= Рн / РЕ 100% = (1 – гэк I / Еэк) 100%

При двух предельных значениях сопротивления гн = 0 и гн = °° мощность приемника равна нулю, так как в первом случае равно нулю напряжение между выводами приемника, а во втором случае – ток в цепи. Следовательно, некоторому определенному значению гн соответствует наибольшее возможное (при данных еэк и гэк) значение мощности приемника. Чтобы определить это значение сопротивления, приравняем нулю первую производную от мощности рн по гн и получим:

откуда следует, что при условии

мощность приемника будет максимальна:

Равенство (1.38) называется условием максимальной мощности приемника, т.е. передачи максимальной энергии.

На рис. 3.26 приведены зависимости Рн ,РЕ, Uн и η от тока I.

ТЕМА 4: ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО

Переменным называется периодически изменяющийся по направлению и амплитуде электрический ток. При этом, если переменный ток изменяется по синусоидальному закону – он называется синусоидальным, а если нет – несинусоидальым. Электрическая цепь с таким током называется цепью переменного (синусоидального или несинусоидального) тока.

Электротехнические устройства переменного тока находят широкое приме- нение в различных областях народного хозяйства, при генерировании, передаче и трансформировании электрической энергии, в электроприводе, бытовой тех- нике, промышленной электронике, радиотехнике и т. д.

Преимущественное распространение электротехнических устройств пере- менного синусоидального тока обусловлено рядом причин.

Современная энергетика основана на передаче энергии на дальние расстояния при помощи электрического тока. Обязательным условием такой передачи является возможность простого и с малыми потерями энергии преобразова- ния тока. Такое преобразование осуществимо лишь в электротехнических устройствах переменного тока — трансформаторах. Вследствие громадных преимуществ трансформирования в современной электроэнергетике приме- няется прежде всего синусоидальный ток.

Большим стимулом для разработки и развития электротехнических уст- ройств синусоидального тока является возможность получения источников электрической энергии большой мощности. У современных турбогенераторов тепловых электростанций мощность равна100-1500 МВт на один агрегат, большие мощности имеют и генераторы гидростанций.

К наиболее простым и дешевым электрическим двигателям относятся асин- хронные двигатели переменного синусоидального тока, в которых отсутствуют движущиеся электрические контакты. Для электроэнергетических установок (в частности, для всех электрических станций) в России и в большинстве стран мира принята стандартная частота 50 Гц (в США – 60 Гц). Причина такого выбора простые: понижение частоты неприемлемо, так как уже при частоте тока 40 Гц лампы накаливания заметно для глаза мигают; повышение часто- ты нежелательно, так как пропорционально частоте растет ЭДС само индукции, отрицательно влияющая на передачу энергии по проводам” и работу многих электротехнических устройств. Эти соображения, однако, не ограничивают при- менение переменного тока других частот для решения различных технических и научных задач. Например, частота переменного синусоидального тока элек- три ческих печей для выплавки тугоплавких металлов составляет до 500Гц.

В радиоэлектроннике применяются высокочастотные (мегогерцовые) устрой- ства, так на таких частотах повышается излучение электромагнитных волн.

В зависимости от числа фаз электрические цепи переменного с тока под- разделяются на однофазные и трехфазные.

Источник